Course Title: Basic of Electrical Engineering (Code: 3320901)

Diploma Programmes in which this course is offered	Semester in which offered
Electronics & Communication Engineering	First Semester
Plastic Engineering, Power Electronics Engineering,	Second Semester

1. RATIONALE

Use of basic of electrical engineering principles occurs in different occupations. It is therefore necessary for diploma engineering students of almost all the branches to know some of the fundamentals of electrical engineering concepts. Therefore, this course has been designed to take care of this need.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competency:

i. Use different types of electrical test and measuring instruments

3. TEACHING AND EXAMINATION SCHEME

	ne	Total Examination Scheme					ching Sch	Tea		
Tota Mar	Marks	Practical	Theory Marks		Theory Marks		Credits (L+T+P))	(In Hours)	
	РА	ESE	РА	ESE	С	Р	Т	L		
150	30	20	30	70	5	2	0	3		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

Unit – I [1.1 Explain concepts of electric and [1.1 Concepts of EMF, Current, Potential	
Fundamental magnetic parameters Difference, Power and Energy.	
s of Electric 1.2 Differentiate electric and 1.2 Concepts of M.M.F, magnetic force,	
and Magnetic magnetic circuits permeability, hysteresis loop, reluctance,	
Circuits 1.3 Apply Faraday's laws in different leakage factor etc.	
circuits 1.3 Concepts of magnetic and electric circuits	
1.4 Differentiate Statically and Faraday's laws of electromagnetic inductio	on.
dynamically induced EMFs 1.4Dynamically induced emf.	
1.5Statically induced emf(a) Self induced emf (b)
Mutually induced emf.	,
1.6Equations of self & mutual inductance.	
Unit – II 2.1Explain the various basic parameters 2.1 A.C. circuit parameter: Cycle, Frequency,	
A.C. Circuits of AC fundamentals Periodic time. Amplitude. Angular velocity	v.
2.2Solve simple numericals related to current. RMS value. Average value. Form	/ ,
AC circuits Factor & Peak Factor, impedance, phase	
2 3Derive the current and voltage angle and power factor	
relationship in star and delta 2.2. Vector representation of emf and current	
connections 2.3 Mathematical representation of an alternation	nø
2 4 Find currents and voltages in series emf and current	-8
and parallel AC circuits 2.4 A C through pure a) resistors b) inductors	
and parametric encants 2.4 A.C. through pure a) resistors, b) inductors	
25 AC through R-L series R-C series and R	-I -
C series & parallel circuit	L
2.6 Power in A. C. Circuits, Concept of power	
triangle	
2.7 Voltage and Current relationship in Star and	d
Delta connections	u
Unit_III 3 1Explain the construction and working 3.1 General construction and principle of	
Transformer of a single phase transformer transformers	
3.2 Calculate transformer performance 3.2 Emf equation and transformation ratio of	
narameters stransformers	
3 3Describe working principle of auto 3.3 Various losses in transformers and efficience	·v
transformer equation	y
3 4 auto transformers	
Unit IV 4.1 Describe the construction of a 4.1 Construction and Working principle of	
Flastrical typical single phase motor single phase ΛC motor	
Machines 4.2 Explain working principle of 4.2 Various types of single phase motors	
single phase induction motors 4.2 Starting methods for induction motors	
4.3 Explain the working of induction 4.4 Applications of single phase motors	
and the working of induction and applications of single phase motors	
Unit_V 5 Use first the need for protection and the 5.1 Different protective devices such as fuse	
Protection use of MCB_MCCB and FLCB MCB_MCCB and FLCB	
5.2 List the different types of electrical 5.2 Flectrical related Dersonal Drotactive	
related personal protective	
equipment 5.3 Farthing systems: nurnose, material used for	r
5.3 State the need for electrical Earthing Earthing Earthing systems. purpose, indicating systems	I
5.55 are the type of Earthing used in	
domestic and industrial applications	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks (Duration –Hours)			
No.		Hours	R Level	U Level	A Level	Total
1.	Fundamentals of Electric and Magnetic Circuits	10	8	5	2	15
2.	A.C. Circuits	10	8	5	4	17
3.	Transformer 07		5	4	2	11
4.	Electrical Machines 08		5	5	4	14
5.	Protection	07	4	5	4	13
	Total	42	30	24	16	70

Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxomonoy

6. SUGGESTED LIST OF EXPERIMENTS

The experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the above mentioned expected competency.

S. No.	Unit No.	Experiment
1	II	Measure voltage ,current and power in 1-phase circuit.(with resistive load)
2	II	Measure voltage, current and power in R-L series circuit.
3	III	Measure transformation ratio K of 1-phase transformer.
4	III	Connect single phase transformer and measure input & output quantities.
5	IV	Make Star & Delta connection in induction motor starters and measure the line and phase values
6	V	Identify switches, switch fuse and fuse switch units, MCB, MCCB & ELCB.
7	V	Measure voltage, current and power using analog and digital instruments.

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

- i. Interpret the name plate ratings and identify the parts of an induction motor
- ii. Connect the various types of meters to measure the current and voltage of induction motor
- iii. Interpret the name plate ratings and identify the parts of a transformer
- iv. Make star delta connections of transformer
- v. Study of various electrical Earthing systems
- vi. Study of various safety equipments used for preventing electrical hazards.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication/Year
1	Prasad P.V and Sivanagaraju S.	Electrical Engineering: Concepts and Applications	Cengage Learning India, New Delhi, 2012
2	Bhattacharya S.K	Electrical Machine	Tata McGraw Hill; New Delhi, 2010
3	Thereja B.L.	Electrical Technology	S. Chand & Company Ltd; New Delhi 2010

B. List of Major Equipment/ Instrument

i. Analog and Digital Ammeter, Voltmeter, Wattmeter, Multimeter, Megger, Clamp on meter

- ii. Single phase Transformer, Auto transformer
- iii. Single phase AC Motors
- iv. Different types of starters

C. List of Software/Learning Websites:

- i. http://www.animations.physics.unsw.edu.au//jw/AC.html
- ii. http://en.wikipedia.org/wiki/Transformer
- iii. <u>http://www.alpharubicon.com/altenergy/understandingAC.htm</u>

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. S.S.Mehta. Lecturer, Electrical engg.Dept. B&B Institute of Technology, Vallabhvidyanagar.
- Prof. B. R. Shrotriya. Lecturer, Electrical Engg. Dept Govt. Polytechnic, Junagadh.
- Prof. A. S. Pandya. HOD. Electrical Engg.Dept Govt. Polytechnic, Rajkot.
- Prof. V. R. Kotdawala. Lecturer, Electrical Engg.Dept Govt. Polytechnic, Himmatnagar.
- Prof. A.A.Parmar Lecturer, Electrical Engg.Dept. B&B Institute of Technology, Vallabhvidyanagar.
- **Prof. P.S. Chaudhary**. Lecturer, Electrical Engg. Dept. B&B Institute of Technology, Vallabhvidyanagar.

Co-ordinator and Faculty Member from NITTTR Bhopal

- Prof. A.S.Walkey, Associate Professor, Dept. of Electrical & Electronics Engg, NITTTR, Bhopal.
- **Prof.(Mrs.)Susan.S.Mathew**, Associate Professor, Dept. of Electrical & Electronics Engg, NITTTR, Bhopal

Course Title: Basics Mathematics (Code: 3300001)

Diploma Programmes in which this course is offered	Semester in which offered
Automobile Engineering, Biomedical Engineering, Ceramic	
Engineering, Chemical Engineering, Civil Engineering,	
Computer Engineering, Electrical Engineering, Electronics &	
Communication Engineering, Environment Engineering,	
Fabrication Technology, Information Technology,	First Somestor
Instrumentation & Control Engineering, Mechanical Engineering,	rirst Semester
Mechatronics Engineering, Metallurgy Engineering, Mining	
Engineering, Plastic Engineering, Power Elctronics Engineering,	
Printing Technology, Textile Manufacturing Technology, Textile	
Processing Technology, Transportation Engineering	

1. RATIONALE

The subject is classified under Basic Sciences and students are intended to know about the basic concepts and principles of Mathematics as a tool to analyze the Engineering problems. Mathematics has the potential to understand the Core Technological studies.

2. LIST OF COMPETENCIES

The course content should be taught so as to understand and perform the Engineering concepts and computations. Aim to develop the different types of Mathematical skills leading to the achievement of the following competencies:

i. Apply the concepts and principles of mathematics to solve simple engineering problems

3. TEACHING AND EXAMINATION SCHEME

Total Marks	eme Il Marks	mination Sch Practica	Exa Marks	Theory	Teaching Scheme (In Hours)Total Credits (L+T+P)			Tea (
	РА	ESE	PA	ESE	С	Р	Т	L
100	0	0	30	70	4	0	2	2

Legends:

L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit; ESE -End Semester Examination; PA - Progressive Assessment.

4. **DETAILED COURSE CONTENTS**

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Logarithm	1.1 Solve simple problems using concepts of Logarithms	Concept ,Rules and related Examples
Unit– II Determinants and Matrices	2.1 Solve simultaneous equations using concepts of Determinants and Matrices	Idea of Determinant and Matrix, Addition/Subtraction, Product, Inverse up to 3X3 matrix, Solution of Simultaneous Equations(up to three variables)
Unit– III Trigonometry	3.1 Solve simple problems using concepts of Trigonometry	Units of Angles(degree and radian), Allied & Compound Angles, Multiple –Submultiples angles, Graph of Sine and Cosine, Periodic function, sum and factor formulae, Inverse trigonometric function
Unit– IV Vectors	4.1 Solve simple problems using concepts of Vectors	Basic concept of Vector and Scalar, addition & subtraction, Product of Vectors, Geometric meaning of Scalar and Vector Product. Angle between two vectors, Applications of Dot (scalar) and Cross (vector) Product, Work Done and Moment of Force.
Unit-V Menstruation	5.1 Calculate the surface area and volume of different shapes and bodies.	Area of Triangle, Square, Rectangle, Trapezium, Parallelogram, Rhombus and Circle Surface & Volume of Cuboids, Cone, Cylinder and Sphere.

5. SUGGESTED SPRCIFICATION TABLE WITH HOURS AND MARKS (THEORY)

Unit No.	Unit Title	Teaching Hours	Distri	bution of	Theory	Marks
			R Level	U Level	A Level	Total
1.	Logarithms	03	4	4	2	10
2.	Determinants and Matrices	08	6	8	4	18
3.	Trigonometry	08	8	6	4	18
4.	Vectors	06	5	5	4	14
5.	Mensuration	03	3	3	4	10
Total		28	26	26	18	70

Legends:

R = Remembrance; U= Understanding; A= Application and above levels (Revised Bloom's Taxonomy)

6. SUGGESTED LIST OF EXERCISES (During tutorial hours)

The exercises should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency.

S. No.	Unit No.	Exercises/Tutorial
1	1	Logarithms-Simple Examples related Definition and Rules
2		Examples on various types and Graphs
3	2	Determinants, Simple Examples on Matrix Addition/Subtraction and Product
4		Co-factors, Adjoint and Inverse of Matrix
5	2	Solution of Simultaneous Equation using 3X3 Matrix and its Applications
6	3	Practice Examples: Allied & Compound Angles
7		Practice Examples: Periodic functions, Sum/Diff and factor formulae, Inverse Trigonometric function etc.
8		Simple Graphs of Sine and Cosine Functions(Explain Spherical Trigonometry, if possible, for Applications)
9	4	Practice Simple Examples Vectors
10		Example related to Dot and Cross Products and Applications
11	5	Examples on Area
12		Surface Area & Volume and its Applications

Note: The above Tutor sessions are for guideline only. The remaining Tutorial hours are for revision and practice.

7. SUGGESTED LIST OF STUENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based seminars, internet based assignments, teacher guided self learning activities, course/library/internet/lab based Mini-Projects etc. These could be individual or group-based.

- 1. Applications to solve identified Engineering problems and use of Internet.
- 2. Learn MathCAD to use Mathematical Tools and solve the problems of Calculus.
- 3. .Learn MATLAB and use to solve the identified problems.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication
1	Anthony croft and	Engineering	Pearson Education
	others	Mathematics (third	
		edition)	
2	W R Neelkanth	Applied Mathematics-I	Sapna Publication
3	S P Deshpande	Polytechnic Mathematics	Pune Vidyarthi Gruh Prakashan
4	Rudra Pratap	Getting Started with	OXFORD University Press
		MATLAB-7	

B. List of Major Equipment/ Instrument

- 1. Simple Calculator
- 2. Computer System with Printer, Internet
- 3. LCD Projector

C. List of Software/Learning Websites

- 1. Excel
- 2. DPlot
- 3. MathCAD
- 4. MATLAB

You may use other Software like Mathematica and other Graph Plotting software. Use wikipedia.org, mathworld.wolfram.com Etc...

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE:

Faculty Members from Polytechnics

- Dr.N.R.Pandya, HOD-General Dept. Govt. Polytechnic, Ahmedabad
- Dr N. A. Dani, Lecturer, Govt. Polytechnic, Junagadh.
- Smt R. L. Wadhwa, Lecturer, Govt. Polytechnic, Ahmedabad
- Shri H. C. Suthar, Lecturer, BPTI, Bhavnagar
- Shri P. N. Joshi, Lecturer, Govt. Polytechnic, Rajkot
- Shri P. T. Polara, Lecturer, Om Institute of Engg. And Tech, Junagadh,
- Smt Ami C. Shah, Lecturer, BBIT, V. V. Nagar.

Coordinator and Faculty Member From NITTTR Bhopal

•Dr. P. K. Purohit, Associate Professor, Dept. of Science, NITTTR, Bhopal

Course Title: English (Code: 3300002)

Diploma Programmes in which this course is offered	Semester in which offered
Architectural Assistanship, Automobile Engineering, Biomedical Engineering, Ceramic Engineering, Chemical Engineering, Civil Engineering,Computer Aided Costume Design & Dress Making, Computer Engineering, Electrical Engineering, Electronics & Communication Engineering, Environment Engineering, Fabrication Technology, Information Technology, Instrumentation & Control Engineering, Mechanical Engineering, Mechatronics Engineering, Metallurgy Engineering, Mining Engineering, Plastic Engineering, Power Elctronics Engineering, Printing Technology, Textile Designing, Textile Manufacturing Technology, Textile Processing Technology, Transportation Engineering	First Semester

1. RATIONALE

English language has become a dire need to deal successfully in the globalized and competitive market and hence this curriculum aims at developing the functional and communicative abilities of the students in English. Proficiency in English is one of the basic needs of technical students. A technician has to communicate all the time with peers, superiors, subordinates and clients in his professional life. Hence this course is being offered.

2. LIST OF COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies:

- i. Communicate verbally and in writing in English.
- ii. Comprehend the given passages and summarize them.

3. TEACHING AND EXAMINATION SCHEME

Te	aching Sche	me Total Examination Scheme						
	(In Hours)		Credits (L+T+P)	Theor	y Marks	Tutoria	l Marks	Total Marks
L	Т	Р	С	ESE	РА	ESE	РА	
3	2	0	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes		Topics and Sub-topics
	Writing Skills	Speaking Skills	
Unit – I Grammar	1.1 Apply correct verb in the given sentence	1b. Use grammatically correct sentence in day to day communication	 1.1 Tenses Present Tense (Simple, Continuous, Perfect, Perfect Continuous) Past Tense (Simple, Continuous, Perfect) Future Tense (Simple)
	1.2 Distinguish among various Determiners	1d. Distinguish among determiners and apply correctly in communicative usage.	1.2 Determiners - Articles (A, An, The) Some, Any, Much, Many, All, Both, Few, A few, The few, Little, A little, The little, Each, Every.
	1.3 Use appropriate modal auxiliaries in a given expression	1f. Choose appropriate modals in situations where different modes of expressions are used.	1.3 Modal Auxiliaries Can, Could, May, Might, Shall, Should, Will, Would, Must, Have to, Need, Ought to
	1.4 Choose the correct verb for the given subject	1h. Use the correct verb depending on the subject in a sentence.	1.4 Subject- Verb Agreement
	1.5 Distinguish between Active and Passive structures. Apply correct model auxiliary in the given sentence.	1j. Apply the correct voice in formal communication	1.5 The Passive Voice Simple Tenses, Perfect Tenses And Modal Auxiliary Verbs
	1.6 Use appropriate preposition in a sentence	11. Usage of correct preposition as per time, place and direction.	1.6 Prepositions : Time, Place and Direction
	1.7 Identify different connectors and their usage.	1n. Join words or sentences using connectors and bring out the desired meaning.	1.7 Connectors : And, But, Or, Nor, Though, Although, If, Unless, Otherwise, Because, as, Therefore, So, Who, Whom, Whose, Which, Where, When, Why.

GTU/ NITTTR Bhopal/12

Unit	Major I	Learning Outcomes	Topics and Sub-topics
	Writing Skills	Speaking Skills	1
Unit – II Comprehe nsion Passages	2.1 Formulatesentences usingnew words.2.2 Enrich	2e.Discuss the content of the passage/story in the class. 2f. Ask appropriate questions as well to answer them.	 2.1 Comprehension Passages Lincoln's Letter to His Son's Teacher (Abraham Lincoln) What we must Learn from the West
Unit – III	vocabulary through reading. 2.3 Write short as well as long answers to questions. 2.4 Express ideas in English in written form effectively	 2g. Follow oral instructions and interpret them to others. 2h. Present topics effectively and clearly. 2i.Use dictionary, thesaurus and other reference books. 2j.Describe an object or product. 2k. Use correct pronunciations and intonations. 2l. Give instructions orally 3a Express ideas and views 	 (Narayana Murthy) Dabbawallas: Mumbai's Best Managed Business (Amberish K. Diwanji) Internet (Jagdish Joshi) 2.2 Vocabulary Items: Matching items (word and its Meaning) One word Substitution Phrases and idioms S ynonyms and Antonyms from given MCQs My Lost Dollar by Stephen Leacock
Short Stories		 Sa Express ideas and views on given topics. 3b. Speak briefly on a given topic fluently and clearly. 3c. Participate in formal and informal conversations 3d. Recapitulate orally the facts or ideas presented by the speaker 	 My Lost Dollar by Stephen Leacock The Snake in the Grass by R K Narayan A Day's Wait by Earnest Hemingway
Unit – IV Writing Skills	4.1 Write letters and dialogues on given topics / situations.	4b.Face oral examinations and interviews	 4.1 Dialogue Writing 4.2 Samples for Practice: Meeting ad Parting Introducing and Influencing Requests Agreeing and Disagreeing Inquiries and Information 4.3 Letter: Placing an order Letter to Inquiry Letter of Complaint Letter of Adjustment Letter seeking permission
Unit – V Speaking Skills		5a.Follow correct pronunciation, stress and intonation in everyday conversation.	For 28 hours of practical periods , digital language laboratory is recommended to be established in every polytechnic. But as polytechnics currently do not have digital language laboratories practical periods will be engaged encouraging the students to speak as per the text taught in the class.

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit Title	Teaching Hours	Distribution of Theory Marks			
	42+28	R Level	U Level	A Level	Total
Unit – I Grammar	14	8	8	9	25
Unit – II Comprehension	07	4	6	5	15
Passages					
Unit – III Short Stories	07	4	5	5	14
Unit – IV Writing Skills	14	3	6	6	15
Unit – V Speaking Skills	28	1			01
Total	70	20	25	25	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxomonoy)

6. SUGGESTED LIST OF TUTORIAL EXERCISES

The tutorial exercises should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the above mentioned competencies.

S. No.	Unit	Experiment
	No.	
1	Ι	Conversation
		1. Introducing oneself
		2. Introduction about family
		3. Discussion about the weather
		4. Seeking Permission to do something
		5. Description about hobbies
		6. Seeking Information at Railway Station/ Airport
		7. Taking Appointments from superiors and industry personnel
		8. Conversation with the Cashier- College/ bank
		9. Discussing holiday plans
		10. Asking about products in a shopping mall
		11. Talking on the Telephonic
		12. Wishing Birthday to a Friend
		13. Talking about Favourite Sports
2	II	Presentation Skills
		General Presentations pertaining to Unit I, II, III

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- course/topic based seminars,
- internet based assignments,
- teacher guided self learning activities,
- course/library/internet/lab based mini-projects etc. These could be individual or group-based.

8. SUGGESTED LEARNING RESOURCES

A. Text Book

Sr. No.	Author/s	Title of Books	Publication
1	Juneja & Qureshi	Active English	Macmillan

B. List of Reference Books

Sr.	Author/s	Title of Books	Publication
No.			
1	Wren & Martin	High School English Grammar	S. Chand & Co. Ltd
2	M. Gnanamurali	English Grammar at Glance	S. Chand & Co. Ltd.
3	E. Suresh Kumar & Others	Effective English	Pearson
4	S. Chandrashekhar & Others	English Communication for Polytechnics	Orient BlackSwan
5	-	English Fluency Step 1 & 2	Macmillan
6	-	Active English Dictionary	Longman

C. List of Major Equipment/ Instrument

- i.Digital English Language Laboratory
- ii.Computers for language laboratory software
- iii.Headphones with microphone
- iv.Computer furniture

D. List of Software/Learning Websites

- i. http://www.free-english-study.com/
- ii. http://www.english-online.org.uk/course.htm
- iii. http://www.english-online.org.uk/
- iv. http://www.talkenglish.com/
- v. http://www.learnenglish.de/

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Polytechnic Faculty Members

- Prof. K. H. Talati, Govt. Polytechnic, Gandhinagar (Convener)
- Ms. Almas Juneja, Gujarat Technological University, Ahmedabad.
- Shri. D. M. Patel, Govt. Polytechnic, Ahmedabad.
- Dr. Sonal K. Mehta, Govt. Girls Polytechnic, Ahmedabad.
- Shri. Bhadresh J. Dave, Govt. Polytechnic, Rajkot.
- Dr. Peena Thanki, Govt. Polytechnic, Jamnagar.
- Dr. Chetan Trivedi, Govt. Engineering College, Bhavnagar.
- Dr. Raviraj Raval, Govt. Polytechnic, Rajkot.
- Shri Vaseem Qureshi, Vishwakarma Govt. Engineering College, Chandkheda, Ahmedabad.

NITTTR Bhopal Faculty and Co-ordinator

- Dr. Joshua Earnest, , NITTTR, Bhopal
- Prof.(Mrs.) Susan S. Mathew, NITTTR, Bhopal

Course Title: Environment Conservation & Hazard Management (Code: 3300003)

Diploma Programmes in which this course is offered	Semester in which offered				
Biomedical Engineering, Ceramic Engineering, Civil Engineering,					
Computer Engineering, Electrical Engineering, Environment					
Engineering, Fabrication Technology, Information Technology,	First Semester				
Instrumentation & Control Engineering, Mechanical Engineering,					
Mining Engineering, Textile Design, Transportation Engineering					
Architecture Assistantship, Automobile Engineering, Chemical					
Engineering, Electronics & Communication, Mechatronics					
Engineering, Metallurgy Engineering, Plastic Engineering, Power	Second Semester				
Electronics, Printing Technology, Textile Manufacturing, Textile					
Processing					

1. RATIONALE

For a country to progress, sustainable development is one of the key factors. Environment conservation and hazard management is of much importance to every citizen of India. The country has suffered a lot due to various natural disasters. Considerable amount of energy is being wasted. Energy saved is energy produced. Environmental pollution is on the rise due to rampant industrial mismanagement and indiscipline. Renewable energy is one of the answers to the energy crisis and also to reduce environmental pollution. Therefore this course has been designed to develop a general awareness of these and related issues so that the every student will start acting as a responsible citizen to make the country and the world a better place to live in.

2. COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies.

i. Take care of issues related to environment conservation and disaster management while working as diploma engineer.

Teac (ching Sch In Hours	eme)	Total Credits (L+T+P)	Examination Scheme Theory Marks Practical Marks			Exai Theory Marks		eme l Marks	Total Marks
L	Т	Р	C	ESE	РА	ESE	РА			
4	0	0	4	70	30	0	0	100		

3. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	1.1 Enhance knowledge about	1.1 Importance of environment and scope
Ecology and	engineering aspects of	1.2 Engineering and environment issues
environment	Environment	1.3 The natural system, Biotic and a-Biotic
	1.2 Correlate the facts of ecology	components and processes of natural system
	and environment A	1.4 Eco system, food chain and webs and other
	1.3 assess the effect of pollution	biological Systems,
	1.4 List the causes of environmental	1.5 Causes of environmental pollution
	pollution	1.6 Pollution due to solid waste
	1.5 State the major causes of air, water and poise pollution	1.7 water pollution, air pollution, the Noise as
	1.6 Describe how industrial waste	1.8 Pollution of land due to industrial and chemical
	contaminates the land	waste
	1.7 Describe the effects of radiation	1.9 Radiation and its effects on vegetables and
	on vegetables, animals	animals
Unit– II	2.1 Explain the concept of	2.1 Concept of sustainable development,
Sustainable	sustainable development	2.2 Natural resources, a-biotic and biotic resources
Development	2.2 Justify the need for renewable	2.3 Principles of conservation of energy and
	energy	management
	2.3 Describe the growth of	2.4 Need of Renewable energy
	renewable energy in India	2.5 Growth of renewable energy in India and the
	2.4 Explain the concepts of waste	World 2.6 Concert of wests more compart and reculing
	recyling	2.6 Concept of waste management and recynng
	recynng	
Unit – III	3.1 Describe the growth of wind	3.1 Growth of wind power in India
Wind Power	power in India	3.2 Types of wind turbines – Vertical axis wind
	3.2 State the differences between	turbines (VAWT) and horizontal axis wind
	VAWTs and HAWTs	turbines (HAWT)
	3.3 Explain the differences between	3.3 Types of HAWTs – drag and lift types
	drag and lift type wind turbines	3.4 Working of large wind turbines
	3.4 Describe the working of large	3.5 Aerodynamic control of large and small wind
	wind turbines	turbines
	3.5 List the types of aerodynamic	3.6 Types of electrical generators used in small
	2.6 Name the generators used in	and large wind turbines
	1 large wind turbines	
Unit _ IV	1 Describe the salient features of	1 1 Features of solar thermal and PV systems
Solar Power	solar thermal and PV systems	4.1 Types of solar cookers and solar water heaters
	4.2 Describe a solar cooker and	4.3 Solar PV systems and its components and their
	solar water heater	working
	4.3 Describe the working of solar	4.4 Types of solar PV cells
	PV system	4.5 Solar PV and solar water heaters, rating and costing
	4.4 State the salient features of	
	polycrystalline,	
	monocrystalline and thin film	
TT •4	PV systems	
Unit – V	5.1 State the different types of	5.1 Types of Biomass Energy Sources
Biomass	biomass energy sources	5.2 Energy content in biomass of different types
energy	5.2 Describe about the energy	5.5 1 ypes of Biomass conversion processes
	5.3 Describe the working of simple	5.4 Biogas production
	biogas plant	
	oroguo prant	

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – VI	6.1 Explain the principles of seismic	6.1 Introduction of seismic engineering and its
Seismic	Engineering in design of structure	application civil engineering designs
Engineering	6.2 State the appropriate actions to	6.2 Features of disasters such as Floods,
and disaster	be taken during disasters	Earthquakes, Fires, Epidemics, Gas/radioactive
management		leaks etc.
		6.3 Management and mitigation of above disasters

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit		Teaching	Distri	Distribution of Theory Marks			
No.	Unit Title	Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
1.	Ecology and Environment	8	4	4	0	8	
2.	Sustainable Development	10	4	5	1	10	
3.	Wind Power	10	4	6	4	14	
4.	Solar Power	10	4	6	4	14	
5.	Biomass energy	8	4	4	2	10	
6.	Seismic Engineering and disaster	10	6	6	2	14	
	Total	56	26	31	13	70	

Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxomonoy

6. SUGGESTED LIST OF EXPERIMENTS/PRACTICAL EXERCISES

Nil

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Prepare paper on various sustainable development
- ii. Make a report after gathering information the values of water, noise pollution and air pollution in your city/town and compare the values in other cities and towns in India with respect to environmentally acceptable levels
- iii. Prepare a paper on air and water pollution in an industry/institute
- iv. Undertake some small mini projects in any one of the renewable energies
- v. Visit an energy park and submit project on various sources of energy
- vi. Prepare powerpoint on clean and green technologies
- vii. Prepare a list of do's and don'ts applicable during disasters
- viii. Submit a report on garbage disposal system in your city/town.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S. No.	Title of Book	Author	Publication/Year
1	Renewable Energy	Solanki, Chetan Singh	PHI Learning, New Delhi, 2010
	Technologies		
2	Ecology and Control of the	Izrael, Y.A.	Kluwer Academic Publisher
	Natural Environment		
3	Environment Engineering and	Sharma, Sanjay K.	Luxmi Publications, New Delhi
	Disaster Management		
4	Environmental Noise Pollution	Chhatwal,G.R.; Katyal,T.;	Anmol Publications, New Delhi
	and Its Control	Katyal,	
5	Wind Power Plants and Project	Earnest, Joshua & Wizelius,	PHI Learning, New Delhi, 2011
l	Development	Tore	
6	Renewable Energy Sources	Kothari, D.P. Singal, K.C.,	PHI Learning, New Delhi, 2009
	and Emerging Technologies	Ranjan, Rakesh	
7	Environmental Studies	Anandita Basak	Pearson
8	Environmental Science and	Alka Debi	University Press
	Engineering		
9	Coping With Natural Hazards,	K. S. Valadia	Orient Longman
	Indian Context		
	Indian Context		
10	Engineering and Environment	Edward S. Rubin	Mc Graw Hill Publ.

B. List of Major Equipment/ Instrument

- i. Digital sound level meters (to check noise pollution)
- ii. Digital air quality meter (to measure air pollution)
- iii. Digital handheld anemometer (to measure wind speeds)
- iv. Digital hand held pyranometer (to measure solar radiation levels)

C. List of Software/Learning Websites

- i. <u>http://www1.eere.energy.gov/wind/wind_animation.html</u>
- ii. <u>http://www.nrel.gov/learning/re_solar.html</u>
- iii. http://www.nrel.gov/learning/re_biomass.html
- iv. http://www.mnre.gov.in/schemes/grid-connected/solar-thermal-2/
- v. http://www.mnre.gov.in/schemes/grid-connected/biomass-powercogen/

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. H.L.Purohit , HOD, Civil Engg. Dept. L.E.College. Morbi
- Shri. P.A.Pandya, LCE, Civil Engg. Dept, G.P, Himatnagar

Co-ordinator and Faculty Members from NITTTR Bhopal

- Dr. J.P.Tegar, Professor Dept of Civil and Environmental Engg, NITTTR, Bhopal.
- Dr. Joshua Earnest, Professor and Head, Dept. of Electrical & Electronics Engg, NITTTR,

Bhopal

Course Title: Engineering Physics (Group-1) (Code: 3300004)

Diploma Programmes in which this course is offered	Semester in which offered
Automobile Engineering, Ceramic Engineering, Civil Engineering, Environment Engineering, Fabrication Technology, Mechanical Engineering, Mechatronics Engineering, Metallurgy Engineering, Mining Engineering, Plastic Engineering, Transportation Engineering	First Semester
Chemical Engineering, Textile Manufactureing Technology, Textile Processing Technology	Second Semester

1. RATIONALE

As Physics is the mother of all engineering disciplines, students must have some basic knowledge on physics to understand their core engineering subjects more comfortably. Accordingly, in reviewing the syllabus, emphasis has been given on the principles, laws, working formulae and basic ideas of physics to help them study the core subjects. Complicated derivations have been avoided because applications of the laws and principles of physics are more important for engineering students.

As Physics is considered as basic science its principles, laws, hypothesis, concepts, ideas are playing important role in reinforcing the knowledge of technology. Deep thought is given while selecting topics in physics. They are different for various branches of engineering. This will provide sound background for self-development in future to cope up with new innovations. Topics are relevant to particular program and students will be motivated to learn and can enjoy the course of Physics as if it is one of the subjects of their own stream.

Engineering, being the science of measurement and design, has been offspring of Physics

that plays the primary role in all professional disciplines of engineering. The different streams of Physics like Optics, Acoustics, Dynamics, Semiconductor Physics, Surface Physics, Nuclear physics, Energy Studies, Materials Science, etc provide Fundamental Facts, Principles, Laws, and Proper Sequence of Events to streamline Engineering knowledge.

<u>Note:-</u> Teachers should give examples of engineering/technology applications of various concepts and principles in each topic so that students are able to appreciate learning of these concepts and principles.

Laboratory experiments have been set up keeping consistency with the theory so that the students can understand the applications of the laws and principles of physics.

2. LIST OF COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies.....

i. Apply principles and concepts of Physics for solving various Engineering Problems

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Total Examination Scheme							
(In Hours)	Credits (L+T+P)	Theory Marks		Theory Marks		Theory Marks Practical Marks		Total Marks
L	Т	Р	С	ESE	РА	ESE	РА			
3	0	2	5	70	30	20	30	150		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics	
Unit – I Unit – I	 1.1 Explain Physical Quantities and their units. 1.2Measure given dimensions by using appropriate instruments accurately. 1.3Calculate error in the measurement 1.4Solve numerical based on above outcomes 	SI Units & Measurements 1.1 Need of measurement and unit in engineering and science, definition of unit , requirements of standard unit, systems of units-CGS,MKS and SI, fundamental and derived quantities and their units 1.2 Least count and range of instrument, least count of vernier caliper, micrometer screw gauge 1.3 Definition of accuracy, precision and error, estimation of errors -absolute error, relative error and percentage error, rules and identification of significant figures. (Numerical on above topics) Force and Motion:	
	 2.1 Dist retention's haws of motion 2.2 Differentiate among various forces in nature 2.3 Define inertia, momentum and impulse of force 2.4 State Newton's laws of motion 2.5 State law of conservation of momentum 2.6 Solve numerical problems based on above topics 	Recapitulation of equations of motion, Newton's Ist law of motion, Force, basic forces in motion, gravitational force, electrostatic force, electromagnetic force, nuclear force, Inertia, types of inertia (inertia of rest, inertia of motion, inertia of direction), Momentum, Newton's IInd law of motion, measurement of force using second law, simple problems on $F =$ ma and equations of motion, Impulse of force, Impulse as the product of force and time, impulse as the difference of momentum, examples of impulse, simple problems on impulse, Newtons IIIrd law of motion and its examples. Law of conservation of momentum, Statement, simple problems (Numerical on above topics)	
Unit– III	3.1Comprehend the concept of	General properties of matter	
	elasticity and Define Stress,	3.1 Elasticity	
	Strain and Elastic limit.	Deforming force, restoring force, elastic and plastic	

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit Unit IV	Major Learning Outcomes3.2State Hooke's law.3.3Explain the term elasticfatigue.3.4Distinguish betweenStreamline and Turbulent flow3.5Define coefficient ofviscosity.3.6Apply the principle ofviscosity in solving problems.3.7State significance ofReynold's number3.8Explain terminal velocity.3.9Mention Stoke's formula.3.10Explain the effect oftemperature on viscosity3.11Comprehend thephenomenon of surface tensionand its applications.3.12Define surface tension.3.13Explain angle of contactand capillarity.3.14 Solve problems related tosurface tension.4.1Distinguish between Heatand Temperature.4.2Explain modes ofTransmission of heat and theirapplications.4.3Define heat capacity andspecific heat of substances.4.4Explain temperature4.5List various temperature	Topics and Sub-topicsbody, stress and strain with their types. elastic limit,Hooke's law, Young's modulus, bulk modulus, modulusof rigidity and relation between them (no derivation),stress strain diagram. behavior of wire under continuouslyincreasing load, yield point, ultimate stress, breakingstress, factor of safety. 3.2 Surface Tension. Molecular force, cohesive and adhesive force,Molecular range, sphere of influence, Laplace's moleculartheory, Definition of surface tension and its S.I. unit, angleof contact, capillary action with examples, shape ofmeniscus for water and mercury, relation betweensurface tension , capillary rise and radius of capillary (noderivation), effect of impurity and temperature on surfacetension 3.3 Viscosity Fluid friction, viscous force, Definition of viscosity,velocity gradient, Newton's law of viscosity, coefficient ofviscosity and its S.I. unit, streamline and turbulent flowwith examples, critical velocity, Reynolds's number andits significance, free fall of spherical body through viscousmedium (no derivation), up thrust force, terminalvelocity, Stokes law (statement and formula).(Numericals on Above topics)Heat Transfer4.1 Three modes of transmission of heat -conduction,convection and radiation, good and bad conductor of heatwith examples, law of thermal conductivity, coefficientof thermal conductivity and its S.I. unit.4.2 Heat capacity and specific heat of materials4.3 Celsius, Fahrenheit and Kelvin te
	temperatures	(Numericals on above topics)
Unit– V	 5.1 Comprehend the concept of wave motion 5.2 Distinguish between transverse and longitudinal waves. 5.3Define period, frequency, amplitude and wavelength 5.4Explain principle of superposition of waves 5.5Define resonance 5.6Explain resonance. 5.7State Formula for velocity of sound in air 5.8Comprehend the Importance of Reverberation 5.9State Sabine's formula and Factors affecting Reverberation time 5.10Explain ultrasonic waves 	Waves and Sound Definition of wave motion, amplitude, period, frequency, and wavelength, relation between velocity, frequency and wavelength, longitudinal and transverse wave, principle of superposition of waves, definition of resonance with examples, Formula for velocity of sound in air and various factors affecting it Ultrasonic Waves Definition, Properties of ultrasonic waves Uses of ultrasonic waves. Acoustics Of Building Importance of Reverberation, Reverberation time, Optimum time of Reverberation, Coefficient of absorption of Sound, Sabine's formula for Reverberation time, Factors affecting Reverberation time and acoustics of building. (Numericals on above topics)
	Mention applications of	(numericals on above topics)

Unit	Major Learning Outcomes	Topics and Sub-topics	
	ultrasonic waves		
Unit– VI	 6.1 State Properties Of Light 6.2 Define various phenomena of light 6.3 State Snell's law of refraction. 6.4Explain importance and list applications of 	 S Of Light and Nanotechnology Properties Of Light, Electromagnetic spectrum, Reflective refraction, snell's law, diffraction, polarization, interference of light, constructive and destructive interference (Only definitions), physical significance of refractive index, dispersion of light 	
	nanotechnology in engineering field	Introduction to Nanotechnology (Numericals on above topics)	
Unit – VII	 7.1Define radio activity 7.2Distinguish between Natural & Artificial radioactivity 7.3State relation between Half Life, Average Life & Decay Constant. 7.4Describe properties of Alpha, Beta and Gamma rays. 	Radioactivity7.1 RadioactivityDefinition, Natural & Artificial radioactivity, Unitsand Laws of Radioactivity, Half Life, Average Life &Decay Constant.7.2 Radioactive RaysProperties and uses of alpha particles, beta particlesand gamma rays(Numericals on Above topics)	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

	Unit Title		Distribution of Theory Marks			
Unit		Teaching				
No.		Hours	R	U	Α	Total
			Level	Level	Level	
1.	SI Units & Measurements 0:		03	02	05	10
2.	Force and Motion	05	02	02	04	08
3.	General Properties of Matter	10	04	06	08	18
4.	Heat Transfer	04	02	02	02	06
5.	Waves and sound	07	04	04	04	12
6.	Light and Nanotechnology	07	03	03	04	10
7.	Radioactivity	04	02	02	02	06
	Total	42	20	21	29	70

Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

S. No.	Unit No.	Experiment /Practical Exercises			
1	1	Linear Measurement by Vernier calipers			
2	1	Linear Measurement by Micrometer screw			
3	3	Measurement of Surface tension			
4	3	Measurement of Viscosity			
5	3	Measurement of Young's Modulus			
6	3	To determine Force constant with the help of periodic time of oscillations of spring			
7	3	Measurement of specific gravity			
8	6	To calculate refractive index of material of prism using spectrometer device.			
9	4	Joule's mechanical equivalent of heat			
10	4	Measurement of co-efficient of thermal conductivity			
11	5	To study the relation between the length of a stretched string and the tension in it with			
		the help of a sonometer.			
12	6	To calculate SA/V ratio of simple objects to understand nanotechnology			

Minimum 8 experiments/practical exercises should be performed from the above list

Hours distribution for Physics Ex	xperiments :
-----------------------------------	--------------

Sr. No.	Description	Hours
1	An introduction to Physics laboratory and its experiments (for the set of first four experiments)	02
2	Set of first four experiments	08
3	An introduction to experiments (for the set of next four experiments)	02
4	Set of next four experiments	08
5	Mini project	06
6	Viva and Submission	02

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities like: Laboratory based mini projects:

- 1. To calculate acoustics of given class room
- 2. To prepare models of Vernier calipers, micrometer screw gauge and travelling microscope And many more Teacher guided self learning activities:
 - 1. To prepare a chart of applications of nanotechnology in engineering field
 - 2. To prepare models to explain different concepts

And many more Course/topic based seminars:

1. Seminar by student on any relevant topic

8. SUGGESTED LEARNING RESOURCES

A. List of Books

Sr No.	Author	Title of Books	Publication
1	Sears And Zemansky	University Physics	Pearson Publication
2	Paul G Hewitt	Conceptual Physics	Pearson Publication
3	Halliday & Resnick	Physics	Wiley India
4	G Vijayakumari	Engineering Physics, 4e	Vikas-Gtu Students' Series
5	Arvind Kumar &	How And Why In Basic Mechanics	Universities Press
	Shrish Barve		
6	Ncert	Physics Part 1 And 2	Ncert
7	Giancoli	Physics For Scientists And	
		Engineers	
8	H C Verma	Concepts Of Physics	
9	Gomber & Gogia	Fundamentals Of Physics	Pradeep Publications, Jalandhar

B. List of Major Equipment/ Instrument

- 1.Redwood's Viscometer
- 2. Digital Vernier Calipers And . Digital Micrometer Screw Guage
- 3. Digital Travelling Microscope
- 4. Joule's Calorimeter
- 5. Searle's Thermal Conductivity Apparatus
- 6. Visible Light Spectrometer

C. List of Software/Learning Websites

- 1. www.physicsclassroom.com
- 2. www.physics.org
- 3. www.fearofphysics.com
- 4. www.sciencejoywagon.com/physicszone
- 5. www.science.howstuffworks.com

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- •Dr. S. B. Chhag, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Rajkot
- •Ku. B. K. Faldu, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Ahmedabad
- •Shri D. V. Mehta, Lecturer in Physics, Science Deptt, RCTI, Ahmedabad
- •Shri S. B. Singhania, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Ahmedabad
- •Dr. U. N. Trivedi, Lecturer in Physics, Science Deptt, RCTI, Ahmedabad

Coordinator and Faculty Members From NITTTR Bhopal

•Dr. P. K. Purohit, Professor, Department of Applied Science, NITTTR, Bhopal

Course Title: Basics Engineering Drawing (Code: 3300007)

Diploma Programmes in which this course is offered	Semester in which offered
Automobile Engineering, Ceramic Engineering, Civil	
Engineering, Environment Engineering, Mechanical Engineering,	
Mechatronics Engineering, Metallurgy Engineering, Mining	First Semester
Engineering, Printing Technology, Textile Manufacturing	
Technology, Textile Processing, Transportation Engineering	
Chemical Engineering, Electrical Engineering, Fabrication Technology, Plastic Engineering	Second Semester

1 RATIONALE:

Engineering drawing is an effective language of engineers. It is the foundation block which strengthens the engineering & technological structure. Moreover, it is the transmitting link between ideas and realization. It is an attempt to develop fundamental understanding and application of engineering drawing. It covers knowledge & application of drawing instruments & also familiarizes the learner about Bureau of Indian standards. The curriculum aims at developing the ability to draw and read various drawings, curves & projections.

The subject mainly focuses on use of drawing instruments, developing imagination and translating ideas. Developing the sense of drawing sequence and use of drawing instruments effectively yields not only with productive preparation of computer aided graphics but also yields with effective industrial applications ranging from marking to performance of operations.

2 LIST OF COMPETENCIES:

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies:

- i. Prepare engineering drawings manually with given geometrical dimensions using prevailing drawing standards and drafting instruments.
- ii. Visualize the shape of simple object from orthographic views and vise versa.

3. TEACHING AND EXAMINATION SCHEME:

Teaching Scheme		Total	Examination Scheme					
(In Hours)		Credits (L+T+P)	Theory Marks		Practical Marks		Total	
L	Т	Р	С	ESE	PA	ESE	PA	Marks
2	0	4	6	70	30	40	60	200

4. **DETAILED COURSE CONTENTS**

Unit	Major Learning Outcomes	Sub-topics
Unit – 1 ENGINEERING DRAWING AIDS	1.1 Use drawing equipments, instruments and materials effectively.	 1.1 Drawing equipments, instruments and materials. (a) Equipments-types, specifications, method to use them, applications. (b) Instruments-types, specifications, methods to use them and applications. (c) Pencils-grades, applications, types of points and applications. (d) Other materials-types and applications.
Unit– 2 PLANNING, LAYOUT AND SCALLING OF DRAWING	2.1Follow and apply standard practice as per bureau of I.S. for planning and layout 2.2 Choose appropriate scale factor for the drawing as per given situation	2.1 I.S. codes for planning and layout.2.2 Scaling technique used in drawing.
Unit– 3 LINES, LETTERING AND DIMENSIONING	 3.1 Write annotations on a drawing where ever necessary. 3.2Choose appropriate line and dimensioning style for a given geometrical entity. 	 3.1 Different types of lines. 3.2 Vertical capital and lower case letters. 3.3 Inclined capital and lower case letters. 3.4 Numerals and Greek alphabets. 3.5 Dimensioning methods. (a) Aligned method. (b) Unilateral with chain, parallel, progressive and combined dimensioning.

Unit	Major Learning Outcomes	Sub-topics
Unit– 4 GEOMETRIC CONSTRUCTION	4.1 Develop the ability to draw polygons, circles and lines with different geometric conditions.	 4.2 Geometric construction related with line like bisecting a line, to draw perpendicular with a given line, divide a line, etc. 4.3 Geometric construction related with angle like bisect an angle, trisect an angle, etc. 4.4 To construct polygon. a: Triangle b: Square / Rectangle. c: Pentagon with special method. d: Hexagon with special method. 4.5 To draw tangents. 4.6 Geometric construction related with circle & arc.
Unit–5 ENGINEERING CURVES	5.1 Able to draw engineering curves with proficiency and speed as per given dimensions.	 5.2 Conic sections. (a) Concept and understanding of focus, directrix, vertex and eccentricity and drawing of conic sections. (b) Using various methods, understand construction of : i. Ellipse. ii. Parabola. iii. Hyperbola. 5.3 Cycloidal Curves(Cycloid, Epicycloid, Hypocycloid) 5.4 Involutes. (a) Involutes of a circle (b) Involutes of a polygon
Unit- 6 PROJECTION OF POINTS, LINES AND PLANES	 6.1 Draw the projection of points, lines and planes with different conditions. 6.2 Find out true shape and size of a inclined line or plane 	 6.1 Reference planes, orthographic projections. 6.2 Concept of quadrant. 6.3 1st angle and 3rd angle projection and their symbols. 6.4 Projection of points. 6.5 Projection of lines – determination of true length and inclinations for following cases. (a) Line parallel to one or both the plane. (b) Line perpendicular to one of the plane. (c) Line inclined to one plane and parallel to another. (d) Line inclined to both the planes. 6.6 Projection of Planes. (a) Types of planes. (b) Projection of planes parallel to one of the reference planes. (c) Projection of planes inclined to one reference plane and perpendicular to another. (d) Projection of planes inclined to both reference planes.

Unit	Major Learning Outcomes	Sub-topics
Unit– 7 ORTHOGRAPHC PROJECTIONS	 7. 1 Draw the orthographic views of object containing lines, circles and arc geometry. 7.2 Interpret given orthographic views and to imagine the actual shape of the component. 	 7.1 Types of projections-orthographic, perspective, isometric and oblique: concept and applications. 7.2 Various term associated with orthographic projections. (a) Theory of projection. (b) Methods of projection. (c) Orthographic projection. (d) Planes of projection. 7.3 Conversion of simple pictorial views into Orthographic views. Illustrative problems on orthographic projection. 7.4 B.I.S. code of practice. Note : (1) Problem should be restricted up to four views-Front view/Elevation, Top view/Plan and Side views only. (2) Use First Angle Method only.
Unit– 8 ISOMETRIC PROJECTIONS	8.1 Draw the isometric view from orthographic views of object/s containing lines, circles and arcs.	 8.2 Isometric axis, lines and planes. 8.3 Isometric scales. 8.4 Isometric view and isometric drawing. 8.5 Difference between isometric projection and isometric drawing. 8.6 Illustrative problems limited to objects containing lines, circles and arcs shape only.

5. SPECIFICATION TABLE WITH HOURS & MARKS (THEORY):

			Distribution of Theory Marks				
Unit	Unit Title	Teaching	R	U	Α	Total	
No.		Hours	Level	Level	Level		
1.	Engineering drawing aids.	0	00	00	02	02	
2.	Planning, layout and scaling of drawing.	0	02	00	03	05	
3.	Lines, lettering and dimensioning.	0	00	02	00	02	
4.	Geometric construction.	3	00	03	07	10	
5.	Engineering curves.	6	02	00	10	12	
6.	Projection of points, lines and planes.	8	03	00	14	17	
7.	Orthographic projections.	6	00	00	12	12	
8.	Isometric projections.	5	00	02	08	10	
	Total	28	07	07	56	70	

Legends:

R = Remembrance; U = Understanding; A = Application and above levels.

NOTES:

a: If midsem test is part of continuous evaluation, unit number 4, 5 and 6 (For Unit 6, except projections of planes) are to be considered.

b:Ask the questions from each topic as per weightage of marks. Choice of questions must be given from the same topic.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

Ex. No.	Unit No.	Practical Exercises	Hours
1	1,2,3	 USE OF DRAWING INSTRUMENTS: 1. Teacher will demonstrate- a: Use of drawing instruments. b: Planning and layout as per IS. c: Scaling technique. 2. Draw following. Problem – 1 Drawing horizontal, vertical, 30 degree, 45 degree, 60 & 75 degrees lines using Tee and Set squares/ drafter. Problem – 2 Types of lines. Problem – 3 Types of dimensioning. Problem – 4 Alphabets & numerical (Vertical & inclined as Per I.S.). 	14
2	4	GEOMETRIC CONSTRUCTION: Drawing of set of lines with different conditions. (Two problems) Drawing Polygons. (Three Problems) Drawing circles and arcs with different geometric conditions and with line constraints. (Three problems)	06
3	5	 ENGINEERING CURVES – I: Problem –1: Construction of ellipse using any two methods from arc of circle method, four centre method, rectangular method, eccentricity method and concentric circle method. Problem –2: Construction of parabola with any one method from rectangular method, tangent method and eccentricity method. Problem –3: Construction of hyperbola with any one method from eccentricity method and rectangular method. Problem –4: Construction of spiral. (Refer note c for dimensions). 	04
4	5	ENGINEERING CURVES – II: Problem – 1: Construction of cycloid. Problem – 2: Construction of hypocycloid & epicycloids. Problem – 3: Construction of involute (circle).	04

		Problem – 4: Construction of involute (polygon).	
		(Refer note c for dimensions).	
5	б	PROJECTIONS OF POINTS AND LINES: Draw projection of points-For 10 various conditions.(One problem) Draw projection of lines with different conditions. (Four problems) (Refer note c for dimensions).	06
6	6	PROJECTIONS OF PLANE: Draw projection of different planes with different conditions. (triangle, square / rectangular, pentagonal / hexagonal, and circular -one for each). (Four problems) (Refer note c for dimensions).	04
7	7	ORTHOGRAPHIC PROJECTIONS: Draw Orthographic projections of different objects. (Two problems) (Draw four views of each object). (Refer note c for dimensions).	08
8	8	ISOMETRIC DRAWINGS: Draw isometric drawings from given orthographic views (Three problems) (Refer note c for dimensions).	10
9	All	PROBLEM BASED LEARNING: Given the orthographic views of at least three objects with few missing lines, the student will try to imagine the corresponding objects, complete the views and draw these views in sketch book.	-
10	All	 SCHOOL WITHIN SCHOOL: Explain at least one problem for construction and method of drawing in sheet to all batch colleagues. Teacher will assign the problem of particular sheet to be explained to each batch student. Each student will assess at least one sheet of other students (May be a group of 5-6 students identified by teacher can be taken) and will note down the mistakes committed by them. Student will also guide the students for correcting the mistakes, if any. 	-

Notes :-

- a: Use both sides of sheet. For example, draw sheet number 2 on back side of sheet number 1, 4 on back of 3, and likewise.
- b: Theory & practice should be in first angle projections and IS codes should be followed wherever applicable.
- c: The dimensions of line, axes, distances, angle, side of polygon, diameter, etc. must be varied for each student in batch so that each student will have same problems, but with different dimensions.
- d: The sketchbook has to contain data of all problems, solutions of all problems and student activities performed. Students' activities are compulsory to be performed.

- e: A hand out containing applicable standards from IS codes including title block as per IS standard should be given to each student by concerned teacher.
- f: For 40 marks Practical Marks ESE, students are to be assessed for competencies achieved. Students are to be given data for practical ESE to prepare drawings.

7. LIST OF STUDENT ACTIVITIES:

Following is the list of student activities to be performed by each student individually:

Activity No.	Details of student activity							
1	Sketch the combinations of set squares to draw angles in step of 15° . (15° , 30° , 45° , 60° , 75° , 90° , 105° , 120° , 135° , 150° , 165° , 180°).							
2	Solve all problems for all sheets number 1 to 8 in sketch book (with dimensions).							
3	List the shapes you are observing around you in real life with place/item. (For ellipse, parabola and hyperbola).							
4	Take two simple objects. Sketch isometric of them. Also draw orthographic projections of them (all views).							
5	Take one circular shape. Assume one point on circumference and mark it. Roll that shape on flat and circular surface. Observe the path of point.							
6	 List at least two questions individually which you would like to ask for followings: a: Ellipse. b: Involute of circle. c: Perspective projections. d: Use of geometric constructions. e: Quadrants. 							

8. SUGGESTED LEARNING RESOURCES:

A. List of Books

Sr.No	Title of Books	Author	Publication
1	Elements of Engineering Drawing.	N.D. Bhatt	Charotar Publishing House, Anand.
2	Engineering Drawing.	P.J.Shah	S.Chand, New Delhi.
3	Fundamentals of Engineering Drawing.	W.J.Luzzadar	Prentice-hall of India Pvt. LtdNew Delhi
4	Fundamentals of Drawing.	K.R.Gopalkrishna	Subhash Publications, Banglore.
5	Engineering Drawing	M.B.Shah, B.C.Rana	Pearsons.
6	Machine Drawing.	V. Laxminarayan & M.L.Mathur	Jain Brother, New Delhi.
7	Fundamentals of Engineering Drawing.	French & Vierck	McGraw-Hill

B. List of Major Equipments/ Instruments :

- Models- full and cut.
- Set of various industrial drawings being used by industries-up dated.
- Drawing equipments and instruments for class room teaching-large size.
- Drawing board-half imperial size.
- T-square or drafter (Drafting Machine).

- Set squires $(45^{\circ} \text{ and } 30^{\circ} 60^{\circ})$
- Protector.
- Drawing instrument box (containing set of compasses and dividers).
- Drawing sheets.
- Drawing pencils.
- Eraser.
- Drawing pins / clips.
- Roller scale

C. List of Software/Learning Websites:

- rgpv-ed.blogspot.com/2009/02/engineering-curves.html
- http://www.slideshare.net/sahilsahil992/conic-section-1819818
- http://www.technologystudent.com/designpro/drawdex.htm
- http://www.engineeringdrawing.org/engg_curves/problem-3-8-engineering-curves/490/
- http://web.iitd.ac.in/~hirani/mel110-part3.pdf
- http://www.studyvilla.com/ed.aspx
- http://www.youtube.com/watch?v=a703_xNeDao
- http://www.youtube.com/watch?v=TCxTP_8ggNc
- http://www.youtube.com/watch?v=JpgFPZILTu8&feature=related
- http://www.youtube.com/watch?v=o1YPja2wCYQ&feature=related
- http://www.youtube.com/watch?v=dJyKV3Ay7vM&feature=fvwrel
- E-learning package from KOROS.
- E-learning package from Cognifront.
- CD with book-Engineering drawing, M.B. Shah-B.S. Rana (Pearson).
- Computer based learning material published by KOROS.

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof.K. H. Patel**. Head Dept.of Mech., Engg., Dr. S. & S. Gandhi College of Engineering and Technology, Surat,
- Shri.H. R. Sapramer, Lecturer in Mech. Engineering, Dr. J.N.Mehta Government Polytechnic, Amreli.
- **Prof.A.M. Talsaniya**, Lecturer in Mech. Engineering, Sir Bhavsinhji Polytechnic Institute, Bhavnagar.

Co-ordinator and Faculty Memberfrom NITTTR Bhopal

• Prof. Sharad Pradhan, Associate Professor, Dept. of Mech. Engg., NITTTR, Bhopal.

Course Title: Computer Application & Graphics (Code: 3300012)

Diploma Programmes in which this course is offered	Semester in which offered
Ceramic Engineering, Chemical Engineering, Civil Engineering,	
Environment Engineering, Fabrication Technology, Mining	
Engineering, Plastic Engineering, Textile Manufacturing	First Semester
Technology, Textile Processing Technology, Transportation	
Engineering	
Automobile Engineering,	Second Semester

1. RATIONALE

This subject envisages making the student know the fundamentals of Computer Application. It will also helps the student to have hands on experience on different application software used for office automation like MS-Word day-to-day problem solving, in particular for creating business documents, data analysis and graphical representations. Computer Application & Graphics is a course where student will be able to write, Draw, Tabulate, Report, Store and Retrieve and also print on Computer using various Hardware and Software.

Moreover the market driven economy demands frequent changes in product design to suit the customer needs. With the introduction of computers the task of incorporating frequent changes as per requirement is becoming simpler. Some units in this course has been introduced at Diploma level in order to develop the skills in student so that they can generate various digital drawings as required using various CAD software.

2. LIST OF COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies.

i. Use MS word software for word processing applications.

ii. Use relevant software for drafting and editing 2D entities.

3. TEACHING AND EXAMINATION SCHEME

Teac	hing Scł	neme	Total	Examination Scheme						
(]	In Hours	5)	Credits (L+T+P)	Theory Marks		Theory Marks		Practi	cal Marks	Total Marks
L	Т	Р	С	ESE	РА	ESE	РА	100		
0	0	4	4	0	0	40	60			

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Basics of Computer System	Major Learning Outcomes1.1 Describe computer hardware and software1.2 Identify I/O devices1.3 Describe functioning of CU ALU and memory unit1.4 Differentiate various types of printers1.5Explain use of OS1.6Demonstrate various file handling operations2.1Use basics text formatting features2.2Manipulate text2.3Use page Setup features2.4Use spell and grammar utility2.5Work with graphics/ clipart2.6Create and manipulate table2.7Use auto shapes and its formatting with text	Topics and Sub-topicsBasics of Computer SystemConcept of Hardware and SoftwareComputer block diagramInput Output unitCPU, Control Unit, Arithmetic logic Unit (ALU), Memory UnitMonitor, Printers: Dot matrix, Laser, Inkjet, Plotters, ScannerSystem software and Application SoftwareOperating system concepts, purpose and functionsOperating of Windows OS.Creating and naming of file and foldersCopying file, renaming and deleting of files and folders,Searching files and folders, installation application, creating shortcut of application on the desktopOverview of control Panel, Taskbar.Using MS - Word 2007Overview of Word processorBasics of Font type, size, colour,Effects like Bold, italic , underline, Subscript and superscript,Case changing options,Inserting Paragraphs and ListsSetting line spacing; singlePage settings and margins including header and footerSpelling and Grammatical checksTable and its options, Inserting Pictures from Files,Using Drawings and WordArt; Lines and Shapes, Modifying Drawn Objects, Formatting Drawn
Unit–III	3.1Start Computer aided	Objects, options for Creating and Modifying a WordArt Object Introduction to Basic Draw Commands in any
Creating digital drawings using a Computer Aided Drafting (CAD) Software	dratting software (AutoCAD). 3.2Invoke commands in AutoCAD. 3.3Set limits & Coordinate systems. 3.4 Use object selection methods. 3.5Create basic & advance 2D	 Computer Aided Dratting software like Auto CAD Power draft, Micro station: System requirement & Understanding the interface. Components of a CAD software window: Such as Title bar, standard tool bar, menu bar, object properties tool bar, draw tool bar, modify toolbar, cursor cross hair. Command window, status bar,

Unit	Major Learning Outcomes	Topics and Sub-topics
	entities. 3.6Close & save your work	 drawing area, UCS icon. File features: New file, Saving the file, Opening an existing drawing file, Creating Templates, Quit. Setting up new drawing: Units, Limits, Grid, Snap, Methods of Specifying points- Absolute coordinates and Relative Cartesian & Polar coordinates. Using Object Snap like Endpoint, Midpoint, Intersection, Center Point, Quadrant Point, Nearest, Perpendicular, Apparent Intersection SNAP, GRID, OTRACK, LINE, PLINE, ARC, CIRCLE, Ellipse, DONUT, Polygon, Region, File Commands: New, Open, Templates Save, Exit, Standard sizes of sheet. Selecting Various plotting parameters such as Paper size, paper units, Drawing orientation, plot scale, plot offset, plot area, print preview Concept of model space and paper space. Creating view ports in model space and creating floating viewport in paper space. Shifting from model space to paper space and vice versa
Unit – IV Editing & viewing a Digital Drawing using a CAD software	 4.1Modify existing 2D entities. 4.2Use different arrays in existing 2D drawing. 4.3View given drawing entities properly. 4.4Enquire about various attributes of existing 2D entities. 	 Introduction to Basic Edit, Inquiry and display Commands in any Computer Aided Drafting software like Auto CAD Power draft, Micro station: Copy, Rotate, Move, Erase, Mirror, Array, Trim, Break, Extend, Chamfer, Fillet Zoom window, Zoom in-out, PAN List, Dblist, Area, Massprop
Unit – V Advance editing of a digital drawing using a CAD Software	 5.1Use layers for proper management of drawings. 5.2Set properties of existing drawing entities as per requirement. 5.3 Able to dimension given 2D entities with perfection. 5.4Use Blocks effectively to create perfect drawings. 	 Introduction to Advanced Modify & other utility Commands in any Computer Aided Drafting software like Auto CAD Power draft, Micro station: Properties, Line type, colour, line weight Concept of Layers: Creating Layers, Naming layers, Making layers ON/OFF, Freeze-Thaw layers, Lock/Unlock Layers. Setting the properties of layers like Color, Line type, Line weight Concept of Blocks: Local block, global block. Creating, inserting, redefining & exploding blocks. Concept of Hatch: Selecting Hatch pattern, Hatch styles, Hatch Orientations. Associative Hatch. Boundary Hatch, Hatching Object. Dimensioning: Types of dimensioning: Linear- Horizontal, Vertical, Aligned, Rotated, Baseline, Continuous, Diameter, Radius, Angular Dimensions. Dim scale variable. Editing dimensions.

Unit	Major Learning Outcomes	Topics and Sub-topics
		• Text: Single line Text, Multiline text.
		• Text Styles: Selecting font, size, alignment etc.

5. SPECIFICATION TABLE (for theory)

There is no theory paper and hence specification table for theory is not applicable

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

1 1 • Create and manage files and folder tree • Use accessories utilities of windows OS • Identify icons, processes going on, messages and interpretation • Write given text using WORD software and beautify • Plot and Print drawing, text on suitable paper • Prepare report using stored text and drawing 2 2 • Entering and editing text in document file. • Apply formatting features on Text like Bold, Italics, Underline, font type, colour and size. Apply features like bullet, numbering • Create and manipulate tables • Students will prepare File for the above mentioned practical and assignments on individual basis. • Students will collect photographs from internet which are related to field application of topics. 3 3 • Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. • Create and any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. • Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. • Construc a common templates for all the following assignments with institutes logo & standard title block. • Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4).	S.No.	Unit No.	Practical Exercises
• Use accessories utilities of windows OS • Identify icons, processes going on, messages and interpretation • Write given text using WORD software and beautify • Plot and Print drawing, text on suitable paper • Prepare report using stored text and drawing 2 • Entering and editing text in document file. • Apply formatting features on Text like Bold, Italics, Underline, font type, colour and size. Apply features like bullet, numbering • Create documents, insert images, format tables Create and manipulate tables • Students will prepare File for the above mentioned practical and assignments on individual basis. • Students will collect photographs from internet which are related to field application of topics. 3 • Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. • Creating a new folder in the computer for saving your practical work. • Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. • Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. • Construc a common templates for all the following assignments with institutes logo & standard title block. • Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). 4 • List different	1	1	Create and manage files and folder tree
 Identify icons, processes going on, messages and interpretation Write given text using WORD software and beautify Plot and Print drawing, text on suitable paper Prepare report using stored text and drawing 2 Prepare report using stored text and drawing 2 Entering and editing text in document file. Apply formatting features on Text like Bold, Italics, Underline, font type, colour and size. Apply features like bullet, numbering Create documents, insert images, format tables Create and manipulate tables Students will prepare File for the above mentioned practical and assignments on individual basis. Students will collect photographs from internet which are related to field application of topics. 3 Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. Creating a new folder in the computer for saving your practical work. Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). 4 List different properties of entities made in above activity slot. 			Use accessories utilities of windows OS
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			• Identify icons, processes going on, messages and interpretation
4 4 9 Plot and Print drawing, text on suitable paper 9 Prepare report using stored text and drawing 2 2 2 Entering and editing text in document file. • Apply formatting features on Text like Bold, Italics, Underline, font type, colour and size. Apply features like bullet, numbering • Create documents, insert images, format tables Create and manipulate tables • Students will prepare File for the above mentioned practical and assignments on individual basis. • Students will collect photographs from internet which are related to field application of topics. 3 • Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. • Creating a new folder in the computer for saving your practical work. • Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. • Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. • Construc a common templates for all the following assignments with institutes log & standard title block. • Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4).			• Write given text using WORD software and beautify
2 2 • Entering and editing text in document file. 2 2 • Entering and editing text in document file. • Apply formatting features on Text like Bold, Italics, Underline, font type, colour and size. Apply features like bullet, numbering • Create documents, insert images, format tables • Create documents, insert images, format tables • Students will prepare File for the above mentioned practical and assignments on individual basis. • Students will collect photographs from internet which are related to field application of topics. 3 • Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. • Creating a new folder in the computer for saving your practical work. • Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. • Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. • Construc a common templates for all the following assignments with institutes logo & standard title block. • Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). 4 • List different properties of entities made in above activity slot.			• Plot and Print drawing, text on suitable paper
2 2 • Entering and editing text in document file. • Apply formatting features on Text like Bold, Italics, Underline, font type, colour and size. Apply features like bullet, numbering • Create documents, insert images, format tables Create and manipulate tables • Students will prepare File for the above mentioned practical and assignments on individual basis. • Students will collect photographs from internet which are related to field application of topics. 3 • Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. • Creating a new folder in the computer for saving your practical work. • Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. • Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polyplines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. • Construc a common templates for all the following assignments with institutes logo & standard tile block. • Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). 4 • List different properties of entities made in above activity slot.			• Prepare report using stored text and drawing
 Apply formatting features on Text like Bold, Italics, Underline, font type, colour and size. Apply features like bullet, numbering Create documents, insert images, format tables Create and manipulate tables Students will prepare File for the above mentioned practical and assignments on individual basis. Students will collect photographs from internet which are related to field application of topics. Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. Creating a new folder in the computer for saving your practical work. Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). List different properties of entities made in above activity slot. 	2	2	• Entering and editing text in document file.
 Create documents, insert images, format tables Create and manipulate tables Students will prepare File for the above mentioned practical and assignments on individual basis. Students will collect photographs from internet which are related to field application of topics. Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. Creating a new folder in the computer for saving your practical work. Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). List different properties of entities made in above activity slot. 			• Apply formatting features on Text like Bold, Italics, Underline, font type, colour and size. Apply features like bullet, numbering
4 4 • List different properties of entities made in above activity slot. 4 4 • List different properties of entities made in above activity slot.			Create documents, insert images, format tables
 Students will prepare File for the above mentioned practical and assignments on individual basis. Students will collect photographs from internet which are related to field application of topics. 3 3 • Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. Creating a new folder in the computer for saving your practical work. Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). 4 4 • List different properties of entities made in above activity slot. 			Create and manipulate tables
 Students will collect photographs from internet which are related to field application of topics. 3 3 • Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. Creating a new folder in the computer for saving your practical work. Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). 4 4 • List different properties of entities made in above activity slot. 			• Students will prepare File for the above mentioned practical and assignments on individual basis.
 3 3 Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station. Creating a new folder in the computer for saving your practical work. Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). 4 4 List different properties of entities made in above activity slot. 			• Students will collect photographs from internet which are related to field application of topics.
 Creating a new folder in the computer for saving your practical work. Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). List different properties of entities made in above activity slot. Try viewing commands on entities made in above activity slot. 	3	3	• Study of different types of drafting packages related to 2D e.g. AutoCAD, Power draft, Micro station.
 Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps. Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). List different properties of entities made in above activity slot. Try viewing commands on entities made in above activity slot. 			 Creating a new folder in the computer for saving your practical work.
 Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands. Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). List different properties of entities made in above activity slot. Try viewing commands on entities made in above activity slot. 			• Draw any three complicated 2D shapes using lines only following Absolute, Relative coordinate systems and object snaps.
 Construc a common templates for all the following assignments with institutes logo & standard title block. Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). List different properties of entities made in above activity slot. Try viewing commands on entities made in above activity slot. 			• Draw Five problems on different geometrical shapes in AutoCAD software using Lines, Polylines, Polygon, Circles, Arcs, Ellipse AutoCAD commands.
 Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4). 4 4 • List different properties of entities made in above activity slot. • Try viewing commands on entities made in above activity slot. 			• Construc a common templates for all the following assignments with institutes logo & standard title block.
 4 4 • List different properties of entities made in above activity slot. • Try viewing commands on entities made in above activity slot. 			• Plot one drawing using above template and containing some 2D entities on suitable size of paper(A4).
Try viewing commands on entities made in above activity slot.	4	4	List different properties of entities made in above activity slot.
			Try viewing commands on entities made in above activity slot.
		 Create drawing of three different Doors & Windows (Elevations). Create drawing of a modern Study table (Elevations). Create drawing of a modern sofa Set (Plan). Draw three problems with polar & rectangular Arrays. Create Top view of a circular and a rectangular Dining Table with six chairs using Polar and Rectangular array concept respectively. Create plan & elevation of a primary school building. Create plan & elevation of a medium size modular kitchen. 	
---	---	---	
5	5	 Convert above door, windows, Bed, Dinning table into Blocks and use these blocks in following activities. Three problems on 2D entity generation, which involve the use of layers, blocks and hatching. Dimensioning of above figures. Create your own text style (individually) Draw two sheets on template developed at serial no3 and Create a plan & elevation of a Duplex Bungalow with following layers: Basic civil structure Water supply line Electric supply Toilet fittings Furniture(using blocks) 	

7. SUGGESTED LIST OF STUDENT ACCTIVITY

Teachers can decide on their own the list of student activities to promote the intereste of students in use of computers and develop the competencies

8. SUGGESTED LEARNING RESOURCES

A. List of Books

Sr. No.	Title of Book	Author	Publication	
1.	R Taxali	Computer Course	Tata McGraw Hills. New Delhi.	
2.	P. Nageswara Rao	AutoCAD For Engineering Drawing Made Easy	Tata McGraw Hill	
3.	George Omura	Mastering AutoCAD	BPB publication	
4.	Sham Tickoo	AutoCAD 2004	Galgotia Publications,New Delhi	
5.	Devid Frey	AutoCAD 2000	BPB publication	
6.	A. Yarwood	An Introduction to AutoCAD2000	LongMan	
7.	Ron House	Using AutoCAD 2000	Prentice Hall	
8.	Autodesk Inc.	Latest AutoCAD Manual	Autodesk Inc.	

B. List of Major Equipment/ Instrument

- Computer System
- Printer
- Flat Bed Plotter A4 size

C. List of Software/Learning Websites

- Latest Educational Network version of Auto CAD Software
- MS Office

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. H. L. Purohit, Head of Civil Engineering Department, L. E. College, MORBI
- Prof. B G RAJGOR, HOD, Applied Mechanics Department, B & B Institute of Technology

Coordinator & Faculty from NITTTR Bhopal

- **Prof. Sanjay Agarawal**, Professor & Head Dept. of Computer Engg. & Application, NITTTR, Bhopal
- Prof. Sharad Pradhan, Associate Professor, Dept. of Mechanical Engg., NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Fundamental of Mechanical Engineering (Code: 3300015)

Diploma Programmes in which this course is offered	Semester in which offered
Electrical Engineering, Plastic Engineering	First Semester
Ceramic Engineering, Metallurgy Engineering, Mining Engineering, Transportation Engineering	Second Semester

1. **RATIONALE:**

In the era of technology integration, it has become unavoidable to possess the basic knowledge of various engineering disciplines. The advancement in technology is the best on multi technology integration and hence in performance too. The motive of this subject is to enhance the knowledge & skill level in the inter disciplinary area to strengthen the present practices.

This course is specially designed with a view to impart basic knowledge of other conventional disciplines (other than own discipline).

This course mainly encompasses the major and general areas of mechanical engineering which are being used by common man to large industrial sectors. A technician has to know many times the implications and knowledge of other disciplines so as to conclude the solution of his/her own branch tasks.

2. LIST OF COMPETENCIES:

i. To perform the simple tasks related to mechanical engineering so as to reduce the dependency on mechanical engineers and to achieve the reliability and quality of own branch's tasks.

3. TEACHING AND EXAMINATION SCHEME:

Teaching Scheme		Total Credits			Exami	nation Sch	eme	
(In Hours) (L-		(L+T+P)	Theory	Marks	Practica	al Marks	Total Marks	
L	Т	Р	С	ESE	PA	ESE	РА	150
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. **DETAILED COURSE CONTENTS:**

Unit	Major Learning Outcomes	Sub-topics		
Unit -1 INTRODUCTION	1.1 Identify mechanical related basic components and their uses.	 1.1 Introduction of mechanical engineering. 1.2 Use of mechanical engineering : a. In day to day life. b. Interdisciplinary use. 1.3 Items in general use- identification criteria, major types, specifications and uses : such as bolts, nuts, washers, bearings, bushes, belts, springs, levers, couplings, brakes, screws, rivets, keys, o' rings, oil seals, gears, pulleys, shafts, axles, etc. 1.4 Pipes and pipe fittings- Types , specifications and uses of pipes and pipe fittings. 1.5 Hand and power tools: a. Types, specifications and uses of spanners (such as fix, ring, box, pipe, allen, adjustable, etc.). b. Types, specifications and uses of hand tools (such as pliers, screw drivers, saws, hammers, chisels, cutters, planes, etc.). c. Types, specifications and uses of power tools(drill, chipper, etc.) 		
Unit –2 POWER TRANSMISSION & SAFETY	 2.1 Identify the type of power transmissions being used. 2.2 Follow general safety norms. 	 2.1 Power transmission: a. Importance. b. Modes (belt drives, rope drives, chain drives and gear trains). c. Types of belts. d. Gear train-concept, transmission ratio. e. Applications. 2.2 Types and applications of couplings in power transmission. 2.3 Causes and remedies of general accidents in power transmission. 2.4 Safety norms to be followed for preventing accidents and damage in power transmission. 2.5 Safety norms to be followed in mechanical based industries / shop floors. 		
Unit – 3 PROCESSES ON MATERIAL	3.1 Understand common metal joining and machining methods.	 3.1 Welding. a. Types. b. Working setup of arc and gas welding, accessories and consumables. c. Types of work carried out by welding. d. Precautions and safety during arc and gas welding. 		

Unit	Major Learning Outcomes	Sub-topics
UNIT -4 STEAM GENERATION AND PRIME MOVERS	4.1 Explain working of boilers and prime movers.	 3.2 Brazing and Soldering. a. General set up. b. Applications. 3.3 Gas cutting. a. Working setup, accessories and consumables. b. Types of work carried out. c. Precautions and safety during gas cutting. 3.4 Foundry. a. Concept. b. Process of getting cast material. c. Applications. 3.5 Other metal forming and cutting operations- bending, shearing-concept and applications. 3.6 Basic machine tools. a. Working principle of hacksaw, lathe, drill and milling machines. b. Types of operations / jobs which can be performed on machine tools listed above. 4.1 Steam. a. Classification. b. Working. c. Accessories and mountings-types and applications. d. Applications. e. Regulations and safety requirements. f. Common troubles and remedies. 4.3 Prime movers. a. Meaning. b. Classification. c. Mring. c. Steam turbine-working. e. Gas turbine-types and applications. f. Common troubles and remedies.
Unit –5 INTERNAL COMBUSTION ENGINES	5.1 Explain working of internal combustion engines.	 5.1 Internal combustion engines. a. Meaning. b. Classification. 5.2 Working of petrol engine, diesel engine and gas engine. 5.3 Performance parameters. 5.4 Main parts and functions. 5.5 Applications. 5.6 Common troubles and remedies.

Unit	Major Learning Outcomes	Sub-topics
Unit- 6 HYDRAULIC AND PNEUMATIC DEVICES	 6.1 Identify the applications of fluid concepts. 6.2 Use pumps and other hydraulic – pneumatic equipments and machineries. 	 6.1 Concept of theory of fluid flow. 6.2 General properties of fluids. 6.3 Pump. a. Working principle. b. Types. c. Working of centrifugal and reciprocating pumps. d. Performance parameters. e. Main parts of pumps and their functions. f. Common troubles and remedies. 6.4 Water turbines-working principle, types and applications. 6.5 Common troubles and remedies of water turbine. 6.6 Air compressor. a. Working principle. b. Types. c. Performance parameters. d. Applications. 6.7 Other hydraulic/pneumatic/ hydro-pneumatic equipments. a. Principle of working-hydraulic lift, hydraulic pump, hydraulic power pack, hydraulic jack. b. Applications of above.
Unit – 7 MATERIAL HANDLING	7.1 Select proper material handling equipment.7.2 Identify common reasons for common troubles.	 7.1 Need of material handling. 7.2 Types , principle of working and applications of material handling equipments. a. Hoisting equipments. b. Conveying equipments. c. Surface & overhead equipments. d. Earth moving machineries. e. Construction machineries. 7.3 Criteria for selection of material handling equipments. 7.4 Factors affecting selection of material handling equipments. 7.5 Selection of suitable material handling equipment for the given situation. 7.6 Common troubles and remedies.

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

				Distribu	tion of T	heory Marks
Unit	Unit Title	Teaching	R	U	Α	Total
No.		Hours	Level	Level	Level	
1.	Introduction	4	5	0	2	07
2.	Power transmission & safety	8	7	7	0	14
3.	Processes on material	8	7	3	4	14
4.	Steam generation and prime movers	4	3	4	0	07
5.	Internal combustion engines	6	3	4	2	09
6	Hydraulic and pneumatic devices	6	3	3	3	09
7	Material handling	6	7	0	3	10
	Total	42	35	21	14	70

Legends:

R = Remembrance; U = Understanding; A = Application and above levels.

NOTES:

- a: If mid sem test is part of continuous evaluation, unit numbers 1, 2 and 3 are to be considered.
- b: Ask the questions from each topic as per marks weightage. Optional questions must be asked from the same topic. That is weightage of compulsory attendance part of questions will be equal to marks allotted to each topic.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

Ex. No.	Unit No.	Practical Exercises/Experiment	Hours
1	1	Demonstrate use of various mechanical items, spanners, hand tools and power tools. Student will prepare the report which will include sketches of each item demonstrated with specifications and applications.	02
2	2	 a: Demonstrate various power transmission methods. Also demonstrate items used in power transmission with material of construction and specifications of each item. Student will prepare the report on working principles, set up sketch, working parameters, specifications of items and safety norms followed. b: Student will calculate velocity ratios for belt drives and number of teeth for gear train based on given data. 	04
3	3	Demonstrate working of welding transformers, welding process, gas welding process, gas cutting process, brazing and soldering process. Student will prepare the report on working principles, set up sketch, working parameters, consumables used with specifications and safety norms	02

		followed.	
4	3	Prepare simple weld joint job.	02
5	3	a: Demonstrate various machining methods on hacksaw, lathe, drill and milling machines.b: Also prepare simple turning job.	04
6	4	Study boiler, boiler mountings and boiler accessories.	02
7	5	Perform and study the effect of variation of load on fuel- consumption of an I.C. engines (On petrol engine). Also locate the faults in a given petrol engine and suggest remedial measures.	02
8	5	Perform and study the effect of variation of load on fuel- consumption of an I.C. engines (On diesel engine). Also locate the faults in a given diesel engine and suggest remedial measures.	02
9	6	Demonstrate a water-turbine.	02
10	6	Perform test on Air compressor.	02
11	6	Perform test on centrifugal pump. Also find fault and 02	
12	7	Study various types of materials handling equipments.	02
		Total	28

NOTES:

- 1. It is compulsory to prepare log book of exercises. It is also required to get each excersise recorded in logbook, checked and duly dated signed by laboratory assistant/instructor and teacher.
- 2. Student activities are compulsory and are also required to be performed and noted in logbook.
- 3. For 20 marks practical ESE, students are to be assessed for competencies achieved.

7. STUDENT ACTIVITIES:

S. No.	Details of activity.		
1	Student will visit the respective discipline industry / site (electrical, printing, as applicable) and will prepare the list of mechanical engineering related equipments/machineries used by that industry / site.		
2	Student will observe the fuel supply system of any bike and will also observe the working of engine. Student will also identify the type and specification of engine used for bike.		
3	Prepare the list of mechanical items surrounding to you.		

8. SUGGESTED LEARNING RESOURCES:

A. List of Books.

S.No.	Title of Books	Author	Publication
1	Theory of Machines	R.S.Khurmi and J.K.Gupta	S.Chand
2	Heat engine	Shah & Pandya	Charotar Publishing House
3	Hydraulic machines	Jagdish lal	Metropolitan Book Company
4	Elements of Workshop	Hazara chaudhary	Asia Publishing House

S.No.	Title of Books	Author	Publication
	Technology (Vol. 1,2)		
5	Hydraulics	R.C.Patel	Acharya Book Depot
6	Pumps operation and maintenance	Tyler and Hicks	Tata McGraw-Hill
7	Material Handling equipments	M.Rundenko	Mir Publishers

B. List of Major Equipment/ Instrument.

- a: Various mechanical items, spanners, hand tools and power tools..
- b: Various power transmission devices.
- c: Welding transformers, welding accessories and consumables.
- d: Gas welding set up with all accessories and consumables.
- e: Brazing and soldering setup with all accessories and consumables.
- f: Gas cutting process set up with all accessories and consumables.
- g: Workshop based machine tools-Hacksaw, Lathe, Drill and Milling.
- h: Boiler/ Working model of boiler.
- i: Petrol engine test rig.
- j: Diesel engine test rig.
- k: Air compressor test rig.
- 1: Water turbine / working model of water turbines.
- m: Centrifugal pump test rig.
- n: Models / working models of various material handling devices.

C. List of Software/Learning Websites: ---

- a: http://www.youtube.com/watch?v=1cFu2bkZ7Vw&feature=related (ic engine)
- b: http://www.youtube.com/watch?v=pCg1Ih_oVSA (pump)
- c: http://www.youtube.com/watch?v=V3aPHmZ97yM&feature=related (pump)
- d: http://www.youtube.com/watch?v=FENCiA-EfaA&feature=related (impeller)
- e: http://www.youtube.com/watch?v=TBdUcGYo7XA (gas turbine)
- f: http://www.youtube.com/watch?v=HzQPNpP55xQ (turbines)
- g: http://www.youtube.com/watch?v=e_CcrgKLyzc (coal power plant)
- h: http://www.youtube.com/watch?v=8GSUgwombdE&feature=related (boiler)
- i: http://www.youtube.com/watch?v=A3ormYVZMXE (hy.lift)
- j: http://www.youtube.com/watch?v=FP05rYRI9JU&feature=related (hy.pump)
- k: http://homepages.cae.wisc.edu
- 1: http://www.youtube.com/watch?v=E6_jw841vKE&feature=related (air compressor)
- m: http://www.youtube.com/watch?v=twM-GLUYQ-o&feature=related (belt drive)
- n: http://www.youtube.com/watch?feature=endscreen&v=gjUwJ1CJVq4&NR=1 (belt drive)
- o: http://www.youtube.com/watch?v=XunM7yUC06M&feature=related (gear drive)

- p: http://www.youtube.com/watch?v=ftdgB93QOD8&feature=related (gear box)
- q: http://en.wikipedia.org/wiki/Boiler

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Shri. M.K.Shukla, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar.
- Shri. A.M.Talsaniya, Lecturer in Mechanical Engineering, Sir B.P.I., Bhavnagar.
- Shri. R.B.Variya, Lecturer in Mechanical Engineering, B and B institute of Technology, Vallabhvidyanagar.
- Shri. N.C.Pandya, Lecturer in Mechanical Engineering, Government Polytechnic, Himmatnagar Co-ordinator and Faculty Member from NITTTR Bhopal

• Dr. K.K. Jain, Professor & Head, Dept. of Mechanical Engg, NITTTR, Bhopal

• Dr. Joshua Earnest, Professor & Head, Dept. of Electrical & Electronics Engg, NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Basic Polymer Chemistry (Code: 3312301)

Diploma Programmes in which this course is offered	Semester in which offered
Plastic Engineering	First Semester

1. RATIONALE

The plastic industry occupies a prominent position in the development of both industrially advanced and developing countries. Plastics are now becoming basic engineering material which is now replacing steel become of their unique properties and low cost. Knowledge of Basic polymer chemistry is essential to take up career in plastic technology. An attempt has been made to make students aware about the basic concepts of polymer chemistry applied for understanding the engineering application in the field of plastics.

2. LIST OF COMPETENCIES

i.. Use basic concepts of organic chemistry in the field of plastic engineering

3. TEACHING AND EXAMINATION SCHEME

Total Marks	eme I Marks	mination Sch Practica	Exar Theory Marks		Total Credits (L+T+P)	Teaching Scheme (In Hours)		Teac (
150	РА	ESE	РА	ESE	С	Р	Т	L
	30	20	30	70	05	2	0	3

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit; ESE – End Semester Examination; PA - Progressive Assessment

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Sub-topics
Unit-1 ORGANIC CHEMISTRY	 1.1Understand basic principles of organic chemistry. 1.2Identify bond types & different organic compounds. 1.3Understand configuration of Carbon. 	 Introduction Periodic table and element structure(C, H, O, S, Cl, N, Si) Types of Bond, Bond angle, Bond length, Bond energy, Electro negativity, Polar Bonds, Bond Polarity& Dipole moment Carbon: Structure and configuration SP-I, SP-II, and SP-III. Classifications of Hydro-Carbons. Classifications of functional groups. Nomenclatures of Organic Compounds (IUPAC).
Unit-2 CONCEPTS OF MONOMER	2.1Familiarize with different monomers & its functionality.	 Basic concepts of Monomer Types of Monomer Functionality of Monomer Purification of Monomer
Unit-3 CONCEPTS OF POLYMER	3.1Understand different types of polymer & its structure.	 Basic concepts of Polymer. Effect of functionality on Polymer Structure. Chemical and geometric structure of polymer. Configuration and conformation, Linear, branched and cross-linked structure, Random, alternating, block and graft polymers, Stereo regular polymer. Classification of Polymer based on: a.Structure Repeating unit Applications Source Nature and Processing
Unit-4 POLYMERIZATION REACTIONS	4.1Develop ability to understand polymerization reactions to produce polymer.	 1.Addition Polymerization reactions: a.Free radical polymerization b.Ionic polymerization c.Co-ordination polymerization 2.Condensation Polymerization a.Poly condensation polymerization b.Poly addition polymerization 3.Rearrangements and Stereo Polymerization 4.Co-Polymerization a.Free radical polymerization b.Ionic polymerization c.Co-poly condensation polymerization

			Di	istributio	on of Th	eory Marks
Unit	Unit Title	Teaching	R	U	Α	Total
No.		Hours	Level	Level	Level	
1.	Organic chemistry	12	09	04	03	16
2.	Concepts of monomer	05	05	03	02	10
3.	Concepts of polymer	09	08	07	05	20
4.	Polymerization reactions	16	10	08	06	24
	Total	42	32	22	16	70

5. Suggested Specification Table with Hours and Marks (Theory)

Legends: R = Remembrance; U = Understanding; A = Application and above levels.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the minimum list of exercises/practical/experiments

Ex. No.	Unit No.	EXERCISES/PRACTICAL/EXPERIMENTS	
1	1	To study about different configurations of carbon.	02
2	1	Identification of simple organic compounds containing C, H, O, N, S & Cl with melting point & boiling point.	04
3	2	To study about monomers(Hydrocarbons, chlorinated monomers)	04
4	2	To study about monomers with several double bonds	02
5	3	Identification of Polymers from Solubility Tests.	04
6	3	Identification of Polymers by Flame Tests.	02
7	3	Separation and Purification of Polymer.	04
8	4	To study about free radical polymerization.	02
9	4	The Condensation Polymerization Reaction Used in the Creation of Nylon 6-10	04

6. Suggested List of Students Activities

Following is the list of student activities.

S. No.	Activity No.	Details of student activity				
1	1	Prepare student reports as asked in experiments.				
2	2	Perform experiments as mentioned.				
3	3	Visit the nearer polymer suppliers.				

Suggested Learning Resources (A)Suggested Learning Resources List of Books (in tabular form)

List of Books

S.No.	Title of Books	Author	Publication
1	Organic Chemistry	P.L.Soni	Sultan Chand & Sons
2	Textbook of Organic Chemistry	Bahl & Tuli	S. C. Chand & Co., New Delhi
3	Textbook of Polymer Science	Billmeyer Jr.	John wiley & sons, New York
4	Polymer Science	V.R.Govariker	New Age International Delhi
5	Polymer Science of Technology	Jod R. Fried	Prentice-Hall of India Pvt. Ltd., New Delhi
6	Textbook of Organic Chemistry	R.K.Bansal	New Age Publications
7	Polymer Science and Technology of Plastics & Rubber	Pramanoy Ghosh	Tata McGrow Hill
8	Polymer Chemistry	Seymour & Carraher	CRC Press
9	Polymer Chemistry	Arora & Singh	Anmol Publications Pvt.
10	Principles of Polymer Chemistry	A Ravve	Springer

(B) List of Major Equipment/Instruments/Machines

a.Chemicals, solvents b.Purification set c.Test tubes, 18 x 150 mm d.Stirring rod, glass e.Bunsen burner f.Beaker, (50 mL, 250 mL) g.Tongs or forceps h.Ring stand and ring with wire gauze i.Safety equipments (gloves, goggles etc) j.Wooden stick k.Styrofoam cup l.Thermometer

(C)List of Relevant Software/Learning Websites

- 1.www2.chemistry.msu.edu/faculty/reusch/virttxtjml/polymers.htm
- 2.<u>http://www.ing.unisi.it/didattica/matdid/2187.pdf</u>
- 3.www.ing.unisi.it/didattica/matdid/2187.pdf
- 4.<u>http://www.liv.ac.uk/~js1/Chem378/VITAL%20COPY%20Handouts%20Lecture15_Rannard_Chem37</u> <u>8.pdf</u>

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty members from Polytechnic

• Shri Ajay Amin, Government Polytechnic, Ahmedabad

Coordinator & Faculty members from NITTTR, Bhopal

• Dr .Ajnu Rawlley, Professor, Applied Science Dept, NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA Sem-2/ B.E. Sem-2 & 7 / B.Pharm. Sem-2 & 7/

Diploma Engineering Sem-2 & 5 (01-07-2013)

Subject Name: Contributor Personality Development Subject Code: 1990001

Table-I -For MCA/B.E. / D.E

			r	Fable-I		
Teaching Scheme				Evalua	tion Scheme	
Theory (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	University Exam (E)	Mid Sem Exam (Theory) (M)	Practical (Internal)
4	0	0	4	70	30	50

*For the Evaluation Scheme of Diploma Engineering Sem – 2, please refer the link

http://www.gtu.ac.in/Syllabus/New_Diploma/sem-2/Pdf/3990001.pdf

Table-I – For B. Pharm only

	Table-II					
Teaching Scheme				Evalua	tion Scheme	
Theory (Hrs.)	Tutorial (Hrs.)	Practical (Hrs.)	Credit	University Exam (E)	Mid Sem Exam (Theory) (M)	Practical (Internal)
4	0	0	4	80	0	20

Note:

- 1. This subject is compulsory.
- 2. 4 Credits will be over and above the existing credit structure.
- 3. This subject will be taught by faculty of English. For B. Pharm., the institute will have to nominate one faculty member for the subject.
- 4. In Institutes, where as the load is not managed by the lecturers of English only, please nominate the other faculty for teaching the course of Contributor Personality Development.

(A) Background

The Contributor Personality Program has been designed keeping in mind the following:

- 1.0 Technology students should not only be excellently trained in the technological field, they should acquire soft skills if they are to be successful. Every student must also learn about the techniques of effective participation in a group discussion. He/she must learn to prepare his/her resume and he/she should also be groomed for presenting himself/herself at an interview.
- 2..0 There is a great need to equip students with not only the right skill-sets but also the right mindsets.

3.0 The 'mindsets' needed in today's environment must support both (i) effective action and (ii) values and service oriented behavior.

Effective action without human values can lead to personal benefits for individuals but a long-term cost to both nation and society. Human values without effective action can lead to an inability on the part of the individual to perform and flourish in today's environment.

This combination of effectiveness with human values is crystallized in the concept of "contributor ship".

4.0 Students who adopt and develop the right mindsets early in their professional career are able to bring about a positive and sustainable change in their overall personality.

They are able to grow the right approaches to their peers, seniors, industry, and their own future. They become more responsible and capable of shaping their own lives.

Therefore, the program may be rightly called a "Contributor Personality Development Program".

5.0 Any program of this sort must, in order to be effective, be inspired and guided by a high ideal and principles/ practices flowing from that ideal.

The Contributor Personality Program is guided by the ideals and ideas of Swami Vivekananda – who represented in his leonine personality the highest ideals of human values combined with effective action.

(B) Course Outline

Topics 1-6 relate to the basic axioms or "mental models" that students carry about themselves, about success, careers, contribution, etc. The right mental models are a necessary prerequisite for developing into a Contributor.

Topics 7-12 are 6 core practices that will help a student manifest the ideal of contributor ship in one's life.

Topics 13-15 relate to the students capability to connect into the job-market.

Topic	Course Title
1	Who is a Contributor
	Student develops an appreciation of who the Contributors are and how they
	fundamentally differ from Non-contributors in their overall approach to work, to
	other human beings, to society as a whole.

2	The Contributor's identity Student develops his/ her own answer to the question "who am I?" The student becomes aware of the fact that Non-contributors usually define themselves in terms of what they have acquired in life (e.g. qualifications, position, years of experience, etc.) while Contributors define themselves in terms of what they will become or accomplish (e.g. capacity to deliver, commitment and ownership of the organization's purpose, etc.).
3	The Contributor's vision of success The student explores the meaning of success in his life. Through this exploration, the student is expected to recognize that Contributors have a wider definition of success than Non-contributors. While Non-contributors define success in terms of material success, achievement, external impact, etc., Contributors are able to widen this definition of success to include personal fulfillment, development of self-esteem, ongoing development of personal capabilities etc.
4	The Contributor's vision of career The student learns to distinguish between an "acquisitive career" and a "contributive career". An acquisitive career is one in which the career-seeker is focused on acquiring higher position, higher salary, more benefits etc. This preoccupation with selfish interests often damages the individual's career, as well as, damages the organization and society. A contributive career is one where the career-seeker is focused on contributing, with rewards being a by-product of the contributions made.
5	 The scope of contribution The student learns to perceive that in all type of work, every type of role, there is a possibility of contributing at multiple levels – contributing to self, contributing to organization, and contributing to society. The student also appreciates the difference between "acquisition for self" and "contribution to self" – the former being material acquisition and the latter being conscious development of oneself through the medium of one's career.
6	Embarking on the journey to contributor ship The student recognizes the fundamental "building blocks" for becoming a Contributor – the first building block being a shift from a "victim" to being a "creator of one's destiny"; the second building block being acceptance of the ideal of contributor ship; the third building block being the willingness to take full responsibility for one's own development; the fourth building block being the capacity to reflect on one's development and make appropriate modifications.

7	Design Solutions
	When faced with a challenge, the Contributor's first response is: "Can we find a solution?" This is unlike a Non-contributor who may respond to the challenge by trying a little and giving up, blaming others, or finding excuses to cover up the issue.
	Whereas, the Contributor finds a solution. In other words, the Contributor develops the capacity to find solutions through continuous practice and learning from other Contributors.
	In this topic, students learn the importance of willingness and ability to find solutions.
8	Focus on value What does creating value mean? It means making a positive difference, a tangible impact, a specific contribution to any situation. This positive difference or impact can be in the form of achieving a specific goal, creating a product, creating 'human touch' in a particular interaction, or enhancing one's own capacity, or the capacity of one's colleagues and team- mates.
	Contributors are therefore extremely result-focused, but the result is measured in terms of value created.
	In this topic, students learn to clarify the meaning of the word "value" and how value is created in various situations.
9	Engage deeply Contributors are instantly distinguished by the way they approach work. They get involved. They are enthusiastic. They go deep into the subject. In short, Contributors love what they do.
	This is in direct contrast to Non-contributors who want to do only what they love - an approach that seems reasonable until you realize that life and workplaces have so much variety that you may very often be called upon to do tasks that seem unpleasant or boring until you get involved.
	In this topic, students learn the importance of engaging deeply with whatever work they do – at work, in study, in personal life.
10	Think in Enlightened Self-interest
	Contributors think in Enlightened Self-Interest. In every situation they get into, they find a way to create something good for self and for all at the same time – including team mates, bosses, customers and their organization.
	Contrasting to this is the mindset of a Non-Contributor. Such a person is only concerned with his/ her own self-interest in a situation. He/she is not concerned about the impact (positive or negative) on the other person. This leads to unpleasant

	situations, broken relationships, unhappy team-mates, subordinates, and bosses, and
	lower trust in any situation.
	Students are expected to learn to appreciate the importance of thinking win-win for
	all stakeholders and also in various situations.
11	Practice Imaginative Sympathy
	One of the unique qualities of Contributors is their ability to appreciate and understand others' life situation, others' mental condition, and others' point of view. How do they do this?
	They have consciously developed a 'way of thinking' called 'Imaginative Sympathy'. In this way of thinking, they are able to give due importance to the human aspects of a situation, and not just the technical or commercial aspects.
	a situation, and not just the technical of commercial aspects.
	But this is not all. Imaginative Sympathy goes beyond looking at the human aspects of the situation. It also means that Contributors are able to anticipate possible interactions or reactions, they are able to take a multi-dimensional view of a situation and they are able to bring about changes or results while taking everybody along with them.
	Imaginative Sympathy translates itself into active concern for others. Students will learn the importance and consequences of Imaginative Sympathy in a workplace situation.
12	Demonstrate Trust Behavior
	Contributors recognize that they are able to achieve results and make contributions with the help of other human beings. They receive this help if and only if they are trusted and, in turn, trust. Contributors practice trust behavior from very early in their career, thereby building a huge trust balance (like a bank balance) over their career and relationships.
	The term Trust Behavior may be described as character-in-action. This includes keeping one's word and commitments, staying with a task, acting with integrity in every situation, making sure that there is complete transparency in one's actions and interactions, etc.
	Students are expected to learn to develop a deep appreciation of trust behavior and how it is practiced.
13	Resume Building
	In this topic, students learn to develop a resume for the job-market. Students will learn to develop both a generic resume and resumes specific to some types of jobs. Students learn about best practices and common errors in developing their resume.

	Most important, students learn to analyze the jobs offered and present themselves in terms of their potential / willingness to contribute to the job.
14	Group Discussions (GDs) In this topic, students learn (i) how to participate in a group discussion from the contributor's view-point (i.e. how to speak) (ii) how to contribute to the development of the topic (i.e. what to speak) and (iii) to develop the Contributor's view-point on various GD topics (i.e. how to interpret a topic of discussion from the point of view of a contributor)
15	Interview Skills In this topic, students learn about (i) common interview questions and how to develop answers (ii) typical challenges faced in interviews beyond the questions (such as body language, grooming, presentation) (iii) most important, the student learns the importance of trust building and creating confidence in the interview.

(C) Course Plan

The course duration is 48 hours. It can be conducted in sessions of 1 hour each or some of the sessions can be combined as 2 hours each. The course plan is as follows –

Тор	ic 1: Who is a Contributor –	3 hours
- 2	2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
((Vol I)	
- :	1 hour Presentations and Projects	
Тор	ic 2: The Contributor's identity –	3 hours
- 2	2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
((Vol I)	
- 1	1 hour Presentations and Projects	
Тор	ic 13: Resume Building	4 hours
- 2	2 hours for Concepts, Tools, and Techniques	
- 2	2 hours for Projects	
Тор	ic 3: The Contributor's vision of success –	3 hours
- 2	2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
((Vol I)	
- 1	1 hour Presentations and Projects	
Тор	ic 4: The Contributor's vision of career –	3 hours
- 2	2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
((Vol I)	
- :	1 hour Presentations and Projects	
Тор	ic 5: The scope of contribution –	3 hours
- 2	2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
((Vol I)	
	1 hour Presentations and Projects	

Topic 6: Embarking on the journey to contributorship –	3 hours
- 2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
(Vol I)	
 1 hour Presentations and Projects 	
Topic 14: Group Discussions (GDs)	4 hours
 2 hours for Concepts, Tools, and Techniques 	
 2 hours for Projects and Practice 	
Topic 7: Design Solutions –	3 hours
- 2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
(Vol II)	
 1 hour Presentations and Projects 	
Topic 8: Focus on value –	3 hours
- 2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
(Vol II)	
 1 hour Presentations and Projects 	
Topic 9: Engage deeply –	3 hours
- 2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
(Vol II)	
 1 hour Presentations and Projects 	
Topic 10: Think in Enlightened Self-interest –	3 hours
- 2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
(Vol II)	
 1 hour Presentations and Projects 	
Topic 11: Practise Imaginative Sympathy –	3 hours
- 2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
(Vol II)	
 1 hour Presentations and Projects 	
Topic 12: Demonstrate Trust Behavior –	3 hours
- 2 hours Theory and practice exercises based on Contributor Personality Program Workbook	
(Vol II)	
 1 hour Presentations and Projects 	
Topic 15: Interview Skills	4 hours
 2 hours for Concepts, Tools, and Techniques 	
 2 hours for Projects and Practice 	
TOTAL	48 hours

(D) Examination Approach

Total marks: 150. Break-up of marks -

- (i) Final exam : 70 marks (equal weightage for topics 1-15)
- (ii) Presentations and projects for topics 1-12: 30 marks
- (iii) Projects for topics 13-15: 50 marks

(E) Instructional Strategy

1.0 The entire course will use a three-level instructional strategy

Level I:	Classroom Explorations
Level II:	Projects and Presentations
Level III:	Self-study by students

- 2.0 Level I: Classroom Explorations
 - 1. The Classroom Explorations will be organized around the 'Contributor Personality Program – Study Book'.

The Study Book may be downloaded by the student from the resource site produced by GTU.

- 2. The Classroom Explorations involves two kinds of explorations:
 - (i) Exploration of key concepts / frameworks such as "contributors vision of success" etc.
 - (ii) Exploration of the examples provided in the CPP Study Book.
- 3. The Classroom Explorations will be supported by Session Guide Sheets available online in the CPP ActivGuide.
- 3.0 Level II: Projects & Presentations
 - 1. The entire Classroom Exploration process will be supplemented by projects and presentations.
 - 2. Session Guides will provide sample topics for projects and presentations. Individual instructors will be free to develop their own projects/ presentation topics also.
 - 3. This will not only enhance conceptual clarity but also build presentation, publicspeaking, report writing, and group discussion skills of the students.
- 4.0 Level III: Self Study by students
 - 1. Students will be given extensive learning support (upto 400 learning units) in the ActivGuide website. This will include videos, presentations, tests, etc.
 - 2. Students can refer to ActivGuide on their own time through internet.

(F) Reference Material

Basic Study Material

SN	Author/s	Name of Reference	Publisher	Edition
1	Illumine Knowledge	Contributor Personality	Illumine Knowledge	Latest
	Resources Pvt. Ltd.	Program Workbook (Vols	Resources Pvt. Ltd	
	(Downloadable from	I & II)		
	the internet)			
2	Illumine Knowledge	Contributor Personality	Illumine Knowledge	Latest
	Resources Pvt. Ltd.	Program ActivGuide	Resources Pvt. Ltd	
	(will be made			
	available to all			
	students on the			
	Internet)			

Reference Books

Topic	Course Title	Reference	
1	Who is a Contributor	1. On Contributors, Srinivas V.; Illumine Ideas, 2011	
		2. Enlightened Citizenship and Democracy; Swami	
		Ranganathananda, Bharatiya Vidya Bhavan, 1989	
		3. Personality Development, Swami Vivekananda;	
		Advaita Ashrama	
2	The Contributor's identity	1. To have or to be, Erich Fromm; Continuum	
		International Publishing Group, 2005	
		2. The art of being, Erich Fromm; Continuum	
		International Publishing Group, 1992	
		3. Raja Yoga, Swami Vivekananda; Advaita	
		Ashrama	
3	The Contributor's vision	1. Eternal Values for a Changing Society – Vol IV	
	of success	(Ch 25, 35), Swami Ranganathananda; Bharatiya	
		Vidya Bhavan, 1993	
		2. Karma Yoga, Swami Vivekananda; Advaita	
		Ashrama	
4	The Contributor's vision	1. Six Pillars of Self Esteem , Nathaniel Branden;	
	of career	Bantam, 1995	
		2. Mindset: The New Psychology of Success, Carol	
		S. Dweck; Random House Publishing Group,	
		2007	
5	The scope of contribution	1. Awakening India, Swami Vivekananda;	
		Ramakrishna Mission, New Delhi, 2011	
		2. Eternal Values for a Changing Society – Vol IV	

			(Ch 35), Swami Ranganathananda; Bharatiya
			Vidya Bhavan, 1993
		3.	Lasting Contribution: How to Think, Plan, and
			Act to Accomplish Meaningful Work, Tad
			Waddington; Agate Publishing, 2007
6	Embarking on the journey	1.	Vivekananda: His Call to the Nation, Swami
	to contributor ship		Vivekananda; Advaita Ashrama
		2.	Eternal Values for a Changing Society - Vol IV
			(Ch 33), Vol III (Ch 19, 21, 30) Swami
			Ranganathananda; Bharatiya Vidya Bhavan, 1993
		3.	Lectures from Colombo to Almora, Swami
			Vivekananda; Advaita Ashrama
7	Design Solutions	1.	Why not?: how to use everyday ingenuity to solve
			problems big and small, Barry Nalebuff, Ian
			Ayres; Harvard Business School Press, 2003
		2.	How to Have a Beautiful Mind, Edward De Bono;
0	F	1	Vermilion, 2004
8	Focus on value	1.	The value mindset: returning to the first principles
			of capitalist enterprise (Cn 8 & 9); Erik Stern,
		2	Managing for Results Pater E Drugker
		2.	Managing for Results, Peter F. Drucker;
0	Engage deenly	1	The Device of Full Engagements Managing
9	Eligage deepiy	1.	Energy Not Time is the Key to High
			Performance and Personal Renewal Jim Loehr
			Tony Schwartz: Simon and Schuster 2003
10	Think in Enlightened Self-	1.	The 7 Habits of Highly Effective People, Stephen
	interest		R. Covey: Simon and Schuster, 2004
		2.	Creating Shared Value, Michael E. Porter and
			Mark R. Kramer; Harvard Business Review;
			Jan/Feb2011, Vol. 89 Issue 1/2
11	Practice Imaginative	1.	Eternal Values for a Changing Society - Vol IV
	Sympathy		(Ch 8, 10, 23, 35, 37), Swami Ranganathananda;
			Bharatiya Vidya Bhavan, 1993
		2.	Eternal Values for a Changing Society - Vol III
			(Ch 18), Swami Ranganathananda; Bharatiya
			Vidya Bhavan, 1993
12	Demonstrate Trust	1.	The Speed of Trust: The One Thing That Changes
	Behavior		Everything, Stephen M. R. Covey, Rebecca R.
			Merrill, Stephen R. Covey; Free Press, 2008
		2.	Integrity: The Courage to Meet the Demands of

			Reality, Henry Cloud; HarperCollins, 2009
		3.	Responsibility at work: how leading professionals
			act (or don't act) responsibly, Howard Gardner;
			John Wiley & Sons, 2007
13	Resume Building	1.	What Color Is Your Parachute? 2012: A Practical
			Manual for Job-Hunters and Career-Changers,
			Richard Nelson Bolles; Ten Speed Press, 2011
		2.	The what color is your parachute workbook: how
			to create a picture of your ideal job or next career,
			Richard Nelson Bolles; Ten Speed Press, 2011
14	Group Discussions (GDs)	1.	Effective Group Discussion: Theory and Practice,
			Gloria J. Galanes, Katherine Adams; McGraw-
			Hill, 2004
15	Interview Skills	1.	What Color Is Your Parachute? 2012: A Practical
			Manual for Job-Hunters and Career-Changers,
			Richard Nelson Bolles; Ten Speed Press, 2011
		2.	The what color is your parachute workbook: how
			to create a picture of your ideal job or next career,
			Richard Nelson Bolles; Ten Speed Press, 2011

General References:-

SN	Author/s	Name of Book	Publisher	Edition
1	Swami	Universal Message of the	Advaita Ashrama,	Latest
	Ranganathananda	Bhagavad Gita (Vol 1-3)	Kolkata	
2	Swami	Eternal Values for a	Bharatiya Vidya	Latest
	Ranganathananda	Changing Society (Vol 1-	Bhavan	
		4)		
3	Asim Chaudhuri	Vivekananda: A Born	Advaita Ashrama,	Latest
		Leader	Kolkata	
4	Swami Vivekananda	Complete Works of	Advaita Ashrama,	Latest
		Swami Vivekananda (Vol	Kolkata	
		1-9)		
5	Swami Vivekananda	Letters of Swami	Advaita Ashrama,	Latest
		Vivekananda	Kolkata	

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

HUMAN RESOURCE MANAGEMENT (Code: 3330001)

Diploma Programmes in which this course is offered	Semester in which offered
Bio Medical Engg., Mechanical Engg., Mechatronics	
Engg., Metallurgy Engg., Power Electronics, Plastic	
Engg., Printing Technology, Ceramic Engg., Textile	3 rd Semester
Manufacturing Technology, Textile Processing Tech.,	
Textile Designing,	

1. RATIONALE

Human resources are very crucial for effective achievement of changing goals of the organization. They have tremendous level of untapped potential which can be utilised by professional supervisor using human resource management abilities. In changing environment the role of the supervisor and people becomes crucial to success. Working conditions may create stress and conflict which could be managed effectively using various tools and techniques related to training, guidance, counselling, mentoring and coaching. In the present era of globalisation, human resource is considered as a dynamic asset which in turn contributes for achieving the excellence and delighting the customers.

This course aims at developing intra-personal, inter-personal and social competencies in the polytechnic students so as to enable them to perform their future role of supervisor effectively.

2. COMPETENCIES (Programme Outcomes according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies.

- i. Manage people effectively to achieve organizational goals
- ii. Foster values, positive attitude and interpersonal relations.
- iii. Facilitate employees for effective achievement of personal goals

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits		Exa	mination S	cheme		
(In Hours)		(L+T+P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	
2	0	0	2	70	30	0	0	100

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment

	Major Looming Outcomes	Topics and Sub topics
Unit	(Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
Unit I	1.a Appreciate importance of human resource	1.1 Need and scope of human resource management in industrial environment.
Introduction		1.2 Impact of human factors on
		productivity and industrial harmony.
		training to the man power.
		1.4 Qualities of a good supervisor.
Unit II		2.1 Importance of human resources in Indian philosophy
	2.a Identify human	2.2 X and Y theory.
Human needs,	motivations.	2.3 Maslow's hierarchy, its importance in
relations and values		managing human resources.
		2.4 Need of human relations and human
	2.b Appreciate values and	values in the industry, inter
	ethics for relationships.	department and intra department.
		clients.
		2.6 Desirable human values and their
		importance including ethics and
		3 1 Need for interpersonal competence
Unit III	3.a Analyse self for	3.2 Determinants of interpersonal
	interpersonal behaviour.	behaviour.
Behavioural		3.3 Concept of interpersonal orientation
dynamics		and attractions and its importance in
		3.4 Concept of group dynamics.
	3.b Develop team spirit and	3.5 Dynamics of group formation.
	positive attitude.	3.6 Types of groups.
		3.7 Role of teams in an organization.
		3.8 Desirable characteristics of a team
		3.9 Concept & importance of positive
		attitude and openness of mind.
		3.10 Do's and don'ts for developing
		positive attitude.
		4.1 Various definitions of leadership
Unit IV	4.a Use leadership	4.2 Situational approach to leadership.
	qualities.	4.3 Quality of a good leader.
Leadership	4.b Develop subordinates	4.4 Power influence and compliance.
Development	by motivations &	4.5 Influence of Leadership.
	4.c Develop decision	- case studies.

4. COURSE DETAILS

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
	making ability.	 4.7 Importance of resource management (human, machine, material, method, money, time (moment), information (message)). 4.8 Need, importance & types of oragnisational training. 4.9 Need and importance of motivations. 4.10 Changing role of supervisor as facilitator& motivator. 4.11 Need, importance and use of guidance, mentoring, coaching and counselling. 4.12 Importance of problem solving and decision making in context of productivity, quality, cost consciousness, human relations and goal achievement. 4.13 Factors affecting decision making. 4.15 Make the decisions for given case/situation case studies.
Unit V Change and stress management.	5.a Identify need for change and barriers to change.5.b Suggest strategies for any change.5.c Resolve conflicts.	 5.1 Need for change. 5.2 Barriers to change. 5.3 Strategies and tools to manage change.(Effective implementation and management of change) case studies. 5.4 Trade unions and their objectives. 5.5 Constructive role of trade unions in goal setting, achievement and change management. 5.6 Causes of conflicts and techniques to resolve conflicts - case studies.
	5d. Analyse stress situation 5e. Manage stress.	 5.7 Concept of stress. 5.8 Causes of stress. 5.9 Stress measuring techniques. 5.10 Need for relieving stress. 5.11 Techniques to manage the stress- case studies. 5.12 Self-management techniques

Unit	Unit Title		Distribution of The						
		Teaching	R	U	Α	Total			
		Hours	Level	Level	Level	Marks			
Ι	Introduction	02	02	03	00	05			
II	Human needs, relations	04	05	05	00	10			
	and values								
III	Behavioural dynamics	08	06	07	07	20			
IV	Leadership Development	08	05	05	10	20			
V	Change and stress	06	02	08	05	15			
	management								
Total		28	20	28	22	70			

5. SUGGESTED SPECIFICATIONTABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. LIST OF EXERCISES/PRACTICAL

Not Applicable

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- a: Name the students with whom you have very good relations. Also list the reasons for that.
- b: Name the students with whom you have very bad relations. Also list the reasons for that.
- c: List the factors/situations which motivate you.
- d: Identify the situations which cause stress to you. Also state reasons for that.
- e: Visit institute's canteen, workshop and administration departments and identify the ways how people manage stress during peak hours.
- f: Visit nearby hotels, hospitals, malls, workshops, industries and draw the organisational structure followed in these organisations. Also prepare a list of documents that are commonly used by them for effective and smooth working of these organisations.
- g: Visit nearby hotels, hospitals, malls, workshops, industries and prepare a report on how they are dealing with day to day grievances and customer complaints.
- h: Visit different organisations and prepare a report on various unions exist in these.
- i: Each student should search the web and prepare biography of one leader from any field and try to identify the leadership traits he/she possesses.
- j: Participate in team building exercises
- k: Prepare a plan to develop yourself for achieving excellence

Sr. No.	Unit	Strategies	Purpose		
1	Ι	Live examples/movies on productivity	Importance of productivity and		
		and harmony.	harmony can be understood.		
2	II	a: Group discussion for Maslow's	To identify human motivations and to		
		hierarchy.	appreciate values and ethics for		
		b: Case study/ case movie which	relationships.		
		appreciate importance of			
		values and ethics.			
3	III	a: Presentation on self	To analyse self for interpersonal		
		characteristics.	behaviour and develop the ability to		
		b: Tasks assignments to deal in	work in team. Also to develop self		
		team.	confidence and openness of the		
		c: Case study/movie.	thoughts.		
		d: Group discussion.			
4	IV	a: Case study-leadership.	To make students aware of the		
		b: Role play-leadership.	techniques to deal different types of		
		c: Group discussion-case for	people effectively. Also to develop the		
		decision making.	ability to identify the factors affecting		
		d: Group discussion for the case	decision making.		
		which require solution.			
5	V	a: Case study/Movie.	To know the causes of conflicts and to		
		b: Group discussion.	find out the resolution techniques of		
			conflicts. Also to know the techniques		
			to manage the stress.		

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

Sr.	Title of Books	Author	Publication
No.			
1.	Managing people at work.	Ahuja, Jain & Chhabra.	Dhanpatrai and Sons.
2.	Human Resource Management	D.R.Patel, Y.R.Joshi	Atul Prakashan.
3.	Human Resource Management	Biswajeet Pattanayak	PHI
4.	Human Resource Management	K. Aswathappa	Tata McGraw Hill
5.	Human Resource Management	V. S. P. Rao	
6.	Seven Habits of successful people	Stephen R. Covey	Free Press
7.	Competency Framework for HRM	B.L. Gupta	Concept Publishing Company, New Delhi, First Edition 2011
8.	Designing and Managing human resources systems.	Pareek, Udai and Rao T.V.	Oxford and TBH Publishing Co., New Delhi 1981
9.	Behavioural processes in organisation.	Pareek, Udai and Rao T.V.	Oxford and TBH Publishing Co., New Delhi 1981

(B) List of Software/Learning Websites:

- a. www.cipd.co.uk/NR/rdonlyres/29D9D26D.../9781843982654_sc.pdf
- b. www.slideshare.net/kumaravinash23/chapter-12-2634971
- c. www.tutor2u.net/business/people/motivation_theory_mcgregor.asp
- d. www.mindtools.com
- e. kalyan-city.blogspot.com/.../maslow-hierarchy-of-needs-theory-of.html
- f. www.enotes.com > Health
- g. www.youtube.com/watch?v=RwZ4-GTSNUI
- h. www.entrepreneur.com/article/204248
- i. ceocommunity.ning.com/forum/attachment/download?id...
- j. www.facultyfocus.com/...leadership/improve-your-decision-making-skill...
- k. www.nap.edu/catalog.php?record_id=13188
- 1. nearyou.gwu.edu/hrdl-hr/hrd-ld-hr_brochure.pdf
- m. www.hrinz.org.nz/Site/Resources/...Base/.../Change_Management_.aspx
- n. http://www.youtube.com/watch?v=OD6-dBymmjk
- http://www.youtube.com/watch?v=SJR-MRVd1okhttp://www.youtube.com/watch?v=pbxpg6D4Hk8

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Shah Bhaskar K**. Lecturer in Mechanical Engineering, Butler Polytechnic, Vadodara.
- **Prof. A.M. Talsaniya**, Lecturer in Mechanical Engineering, Sir Bhavsinhji polytechnic institute, Bhavnagar.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. B.L.Gupta, Professor and Head, Department of Management.
- **Prof. Sharad Pradhan**, Associate Professor and Head Department of Mechanical Engineering.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

BASIC MOULD DESIGN (Code: 3332301)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	3 rd semester

1. RATIONALE

Mould design is the heart of plastic engineering. The quality of any plastic component lies in the accurate design of plastic mould. Every plastic diploma engineer has to invariably handle different types of moulds and the materials required for their manufacture in small scale or large scale plastic industries. S/he will have to identify, analyse and choose the most relevant mould for different applications. Moreover s/he will also have use different types of hand or machine operated plastic moulding equipment. Hence, this course has been designed to develop such competency and skills.

2. **COMPETENCY** (Programme Outcome according to NBA Terminology)

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Select different types of plastic moulds for various applications.

3. TEACHING AND EXAMINATION SCHEME

Teaching SchemeTotal(In Hours)Credits			Examination Scheme					
			(L+T+P)	Theory Marks		Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

4. COURSE DETAILS

	Major Learning Outcomes	
Unit	(Course Outcomes in	Topics and Sub-topics
	Cognitive Domain according	x x
	to NBA terminology)	
Unit – I	1a. Describe functions various	1.1 Basic concept of: Part drawing,
Hand	mould components.	Parting line. Core and cavity
Injection	1b. Sketch different mould	Runner and gate. Election
Mould and	parts as well as mould	Back plate. Dowel. Socket headed
Machine	assembly	screw, Sprue, sprue bush, Runner
Injection		and gate Locating ring plate Knock
Mould		out rod. Guide pin and guide bush
110000		Venting Cooling channel Ejector
		assembly
	1c. Distinguish the features	1.2 Assembly sketch of hand mould
	between hand mould and	1.3 Assembly sketch of machine mould
	machine mould	
Unit– II	2a. Discriminate between flat	2.1 Concepts: Flat parting surface and
Parting	parting surface and non-flat	Non-flat parting surface
Surfaces	parting surface.	
	2b Distinguish between	2.2 Stepped Profiled and Angled
	Stepped Profiled and	2.2 Stepped, Homed and Angled
	Angled parting surfaces	2.3 Complex edge forms
	2c For a given situation select	2.5 Complex edge forms
	the relevant parting surface	
	the relevant parting surface	
Unit– III	3a. Distinguish between	3a. Core and cavity: Integer cavity and
General	integer and core plates	core plates, Inserts and local inserts
Mould	3b. Discriminate between	1
Construction	inserts and local inserts	
	3c. For the given situation,	
	choose the relevant insert	
	3b. Differentiate between	3c. Types of bolster plates: Solid type,
	solid, strip and chase type	Strip type, Frame type, Chase type
	bolster plates.	3d. Guide bush and guide pillar: Leader
	3c. State the features of the	pins, Standard, Spigotted, Surface
	guide bush	fitting, Pull-back
Unit – IV	4a. Explain feeding system	4.1 Sprue
Feed System	4b. Differentiate between	4.2 Runner : Runner section and size,
	Sprue and runner	Runner layout, Balancing of runner
		system
	4c. State the function and	4.3 Types of gate and location of gate
	location of gate	
Unit – V	5a. State the need for the	5.1 Ejector grid
Liection	ejector grid	5.2 Ejector plate assembly

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
System	5b. Distinguish between ejector and retaining plate	Ejector plate, Retaining plate, Ejector rod and bush, Assembly return systems 5.3 Ejector elements and ejection systems
	5c. State the need for sprue puller	5.4 Sprue puller
Unit – VI Cooling system	 6a. Justify the need for a cooling system. 6b. Select the most appropriate cooling integer for a given situation with relevant justification 	 6.1 Need for cooling 6.2 Cooling integer: Cavity plate cooling - U-circuit, Rectangular circuit, Z-circuit; Core plate cooling - Angle hole system, Baffled hole system, Stepped circuit
	 6c. Distinguish between cooling cavity rectangular and circular insert 6d. Differentiate between helical core, Heat pipe and Heat rod and Baffle cooling 	 6.3 Cooling cavity inserts: Rectangular and Circular insert 6.4 Cooling core insert: Helical core cooling, Deep chamber design, Heat pipe cooling, Heat rod cooling 6.5 Baffle cooling

5. SUGGESTED SPECIFICATION TABLE FOR THEORY

		Teaching	Distribution of Theory Marks				
Unit	Unit Title	Hours	R	U	Α	Total	
No.			Level	Level	Level	Marks	
1.	Hand Injection and Machine	07	07	03	03	13	
	Injection Mould						
2.	Parting Surface	03	02	03	00	05	
3.	General Mould Construction	08	07	03	03	13	
4.	Feed System	08	06	04	03	13	
5.	Ejection System	08	07	03	03	13	
6.	Cooling System	08	06	03	04	13	
	Total	42	35	19	16	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective**
domain) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx Hours Required
1		Draw plan and sectional elevation of different injection moulded parts with actual dimensions	08
2	т	Draw plan and sectional elevation of various components of different injection mould	08
3	1	Draw assembly drawing of hand injection mould for given plastic products	08
4		Draw detail drawing of hand injection mould for given plastic products	08
5	II	Sketch various types of parting surfaces	08
6	V	Sketch ejector plate assembly, ejector elements, ejector systems and various types of sprue puller	08
7	VI	Draw different cooling designs	08
Total			56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will collect injection moulded articles and measure its weight and volume.
- ii. Students will collect information related to the experiment through internet.
- iii. Students will visit nearby mould making industry.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Visit to nearby plastic industries
- ii. Video/Animation films on working of different type of molding machines may be shown.
- iii. Mini project on study of different type of molding machines and design of moulds may be given to students.

9. SUGGESTED LEARNING ACTIVITIES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Injection mould design	R.G.W. Pye.	Longman,1989
2.	Fundamentals of injection mould design	A.B.Glenvil L and Denton	Industrial Press, 1965(The University of California)
3.	Plastics mould Engineering handbook	Prible and Drebois	Springer (1987)
4.	How to make injection mould	Henser publication	Henser publication

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Hand injection mould (write broad specifications)
- ii. Machine injection mould (write broad specifications)
- iii. Injection mould components (write broad specifications)
- iv. Digital weighing scale (write broad specifications)
- v. Measuring instruments (write broad specifications)

C) List of Software/Learning Websites

- i. http://www.ferris.edu/htmls/academics/course.offerings/hillm/MYWEB7/index.htm
- ii. http://mould-technology.blogspot.in/search/label/Mold%20Construction
- iii. http://webhotel2.tut.fi/projects/caeds/tekstit/mould/mould_structure.pdf
- iv. http://mould-technology.blogspot.in/2008/02/basic-functions-of-mold-baseparts.html

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Co-ordinator and Faculty Members from NITTTR Bhopal

- Dr. Anju Rawlley, Professor, Dept. of Applied Sciences
- Dr. Abhilash Thakur, Associate Professor, Dept. of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

COMPRESSION TRANSFER AND INJECTION MOULDING (Code: 3332302)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	3 rd semester

1. RATIONALE

A plastic diploma engineer has to supervise operations of injection moulding machines. This competency requires the knowledge of compression transfer and the working principle of different kinds of plastic moulding machines. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. LIST OF COMPETENCIES (Programme Outcome according to NBA Terminology):

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Operate injection moulding machines for relevant applications

3. Teaching and Examination Scheme

Teaching Scheme			Total Credits		Exa	mination Sch	eme	
(In Hours) (L+T+P)		(L+T+P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	РА	
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENT

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Course Outcomes in	
	Cognitive Domain according	
	to NBA terminology)	
Unit – I	1a. Describecompression	1.1 Basic principle of compression moulding,
Compressi	moulding machine parts	Compression moulding press, Type,
on		Manual, Semi automatic, Fully
moulding		automatic, Constructional details,
process		Heating system, Steam heating, Electric
		heating, Oil heating.
	1b.Select appropriate	1.2 Material selection criteria, Fillers and
	material for product	additives, Preheating, Bulk factor and
	1 0 4 4	performs
	Ic.State the steps to operate	1.3 Moulding process, Complete moulding
	mashina	Process variables Dest suring cooling
	machine	firstures and finishing Advantages and
		disadvantages Trouble shooting Start up
		and shut down procedure
	1d Apply compression	1 4 Applications of compression moulding
	moulding techniques on	1.47 upinearions of compression moulding
	different systems	
Unit– II	2a.Distinguish different types	2.1 Hand compression mould, Mould parts,
Compressi	of compression mould	Function, Types, Open flash mould,
on mould	_	Positive mould, Landed positive mould,
	2b. Design compression	Semi-positive mould.
	mould as per requirements	2.2 Assembly and detail drawing, Automatic
		compression mould, Land length,
		Pressure pad, Powder well, Core pins and
		loose parts, significance, Methods of
		ejection.
	2c.Calculate powder well	2.3 Volume calculation, Height calculation,
	21 Distingerich hetere	Press tonnage requirement for mould.
	2d. Distinguish between	2.4 Sumpper plate mould, side-ram moulds
	side ram moulds	
	side-rain moulds	
Unit– III	3a.Describe the concepts of	3.1 Basic principle of transfer moulding
Transfer	transfer moulding.	process
moulding	3b.Describe the Machine	3.2 Transfer moulding machine,
process	parts of transfer	Constructional details, Types, Pot
	moulding.	transfer, Plunger transfer, Screw transfer
		3.3 Moulding process, Process steps, Process
	3c.State the steps to operate	variables, Advantages and
	transfer moulding	disadvantages, Trouble shooting, Start-
	machine for different	up and shut down procedure,
	applications	Applications of transfer moulding

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Course Outcomes in Cognitive Domain according	
	to NBA terminology)	
	3d.Compare the compression moulding	3.4 Compression moulding process
	and transfer moulding.	
Unit – IV Transfer moulds	4a.Distinguish different types of transfer mould	4.1 Introduction, Integral pot transfer mould, Mould parts, Function, Factors to be considered for determining pot dimensions, Plunger transfer mould, Types, Top plunger, Bottom plunger
	4b.Design transfer mould as per requirements	 4.2 Mould parts, Function, Transfer chamber calculation, Chamber depth, Transfer pressure, Compare Integral Pot transfer mould and Plunger transfer mould
	4c.Design the various components for transfer mould	4.3 Venting, gate and runner designs for transfer mould
	4d.Explain cull removing techniques	4.4 Cull and its removal
Unit – V Injection	5a.Describe injection moulding machine parts	5.1 Basic principle of injection moulding, Constructional details of injection moulding machine
moulding	5b.Stated the steps to operate injection moulding machine	5.2 Moulding process, Process steps, Process variables, Advantages and disadvantages, Trouble shooting, Start-up and shut down procedure, Applications of injection moulding process
	5c.Discriminate compression, transfer and injection moulding process	5.3Comparison with injection moulding of thermoplastics, Comparison with compression and transfer moulding process.

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
1.	Compression moulding process	12	08	04	04	16
2.	Compression mould	09	04	06	04	14
3.	Transfer moulding process	08	06	04	04	14
4.	Transfer mould	07	04	04	04	12
5.	Injection moulding of thermosets	06	07	04	03	14
	Total	42	29	22	19	70

5. SUGGESTED SPECIFICATION TABLE

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Unit No. Practical Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	
1		Identify the different parts of compression moulding machine	04
2	Ι	Adjust the settings of a compression moulding machine for producing a particular product	04
3		Calculate compression moulding pressure for Urea formaldehyde(UF)	04
4	п	Use a hand compression mould to produce a given product	04
5		Operate an automatic compression mould for a given product safely	04
6		Identify the different parts of transfer moulding machine	04
7	тт	Calculate transfer moulding cycle time for a given product	04
8		Operate a transfer moulding machine for a given product safely	04
9		Calculate transfer moulding temperature for Phenol formaldehyde(PF)	04
10	TV.	Design to produce integral pot transfer mould for a given product	04
11	IV	Design plunger transfer mould for a given product	04
12		Identify the parts of an injection mouding machine	04
13	V	Operate an injection moulding machine safely	04
14	• •	Plan in detail sequence of operations required for making a given product using injection moulding	04
Total			56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will collect moulded products of thermosets material and would comment on their quality.
- ii. Students will collect information related to the experiment through internet.
- iii. Students will visit nearby thermosets processing industry.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Lecture and demonstration
- ii. Practical exercises
- iii. Mini project

9. SUGGESTED LEARNING ACTIVITIES

A) List of Books

Sr. No.	Title of Book	Author	Publication
1.	Plastic Materials and Processes	Goodman	
2.	Injection Moulding	Irvin I. Rubin	
3.	Thermosetting Plastics	J.F. Monk	
4.	Plastic Engineering Handbook	Berins	
5.	Injection Moulding Handbook	Rosato and Rosato	
6.	Moulding of Plastics	Bikales	
7.	Compression Moulding	Davis	
8.	Injection Moulding Handbook	Fredoz	
9.	Injection/Transfer Moulding Of Thermosetting Plastics	Wright	
10.	Plastics Mould Design	Bebb	
11.	Plastics Mould Engineering Handbook	Dubois and Pribble	
12.	Handbook of Plastic Technology	Allen and Baker	

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Compression moulding machine
- ii. Compression hand mould
- iii. Compression automatic mould
- iv. Measuring instrument
- v. Transfer moulding machine
- vi. Transfer mould
- vii. Injection moulding machine
- viii. Injection mould

C) List of Software/Learning Websites

i. http://www.plenco.com/plenco_processing_guide/Sect%2014%20Preforming%20a nd%20Preheating.pdf

- ii. http://www.efunda.com/processes/plastic_molding/molding_transfer.cfm
- iii. http://www.eng.su.ac.th/che/old53/faculty_and_staff/sirirat/slide_polymer_processi ng_pdf/polymer_processing_10.pdf
- iv. http://www.standardplasticscorp.com/pages/products.htm
- v. http://www.longmold.com/more.php?id=14

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, G.P., Ahmedabad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, G.P., Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Co-ordinator and Faculty Members from NITTTR Bhopal

- Dr. Anju Rawlley, Professor, Dept. of Applied Sciences
- Dr. Abhilash Thakur, Associate Professor, Dept. of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

MOULD FABRICATION TECHNOLOGY-I

(Code: 3332303)

Diploma Programmes in which this course is offered	Semester in which offered
Plastic Engineering	3 rd Semester

1. RATIONALE

A plastic diploma engineer has to use various metal alloys and basic machine tools for selected mould materials. This competency requires the knowledge of ferrous metals and alloys and non ferrous metals and alloys- their structures and properties for selection of materials for fabricating machine components and mould used in plastics industries. This may help to understand different heat treatments and other advanced mould fabrication techniques. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes. This is an important course for plastic engineers.

2. LIST OF COMPETENCIES (Programme Outcome according to NBA Terminology):

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Operate various basic machine tools for selected mould materials.

3. Teaching and Examination Scheme

Teaching Scheme			Total Credits		Examination Scheme			
(.	(In Hours) (L+T+P)		Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	РА	ESE	РА	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

4.DETAILED COURSE CONTENT

Unit	Major Learning	Topics and Sub-topics
	Outcomes (Course	
	Outcomes in Cognitive	
	Domain according to	
	NBA terminology)	
Unit – I	1a. Describe various	1.1 Introduction
Introduction	engineering	1.2Classification of engineering materials
to	materials	1.3Properties of engineering materials
Engineering		1.4 Applications of engineering materials
Materials		
Unit– II	2a.Describe different	2.1 Basics of steel, Types of steels.
Ferrous	types of steel	
Metals and		
Alloys	2b. Explain effect of	2.2Composition and uses of cast iron.
	various alloying	Effect of silicon, sulphur and phosphorus on
	elements on	properties of steels. Effects of alloying
	properties of steel	elements on steels such as chromium, nickel,
		manganese, tungsten, vanadium,
		molybdenum.
		Composition of tool steels/alloy steels.
Unit–III Nas Esseration	3a. Describe the non	5.1 Introduction, Properties of non-ferrous metals,
Non Ferrous	ferrous metal alloys	Aluminium & its alloys, Copper & its alloys
Metals and	2h Calast annuariata	3.2 Application of non-terrous metals & Alloys
Alloys	so. Select appropriate	
	and allows	
Unit IV	And anoys	1 Principle of heat treatment
Unit – I v Heat	treatment	4.11 Incipie of near treatment.
Treatment	4b Distinguish different	4.2 Annealing & process annealing Normalising
of Steel	heat treatment	Hardening Tempering Case hardening
of Steel	processes	(Pack carburising & gas carburising).
	F	Nitriding
		Cyniding (Cabonitriding), Flame hardening
Unit – V	5a.Classify basic	5.1Classification of basic machine tools.
Basic	machine tools	
Machine	5b.Describe working	5.2Working principle, types, constructional
Tools	principle and	features, operations, advantages and
	various machine	disadvantages,
	tools	
	5c.Select proper	5.3 applications of: Lathe machine, Drilling
	machine tool for	machine, Shaping machine, Milling machine,
	mould fabrication	Boring machine

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
1.	Introduction to Engineering	05	05	02	00	07
	Materials					
2.	Ferrous Metals and Alloys	08	05	05	04	14
3.	Non Ferrous Metals and	03	04	03	00	07
	Alloys					07
4.	Heat Treatment of Steel	08	04	08	02	14
5.	Basic Machine Tools	18	04	20	04	28
	Total	42	22	38	10	70

5.SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Notes: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical Exercise/Experiment (Course Outcomes in Psychomotor Domain according to NBA terminology)	Approx Hours Reqd.
1	I Collect one sample of each engineering material and list their		04
		properties	
2		Perform hardening of mould steel using oil as quenching media.	04
2		Measure change in hardness.	
-		Perform Tempering process for the above hardened component	04
3	3	and measure change in properties/hardness.	
4	IV	Perform Annealing treatment for the given job and measure the	04
4		change in hardness.	
~		Perform Normalising treatment for the given job and measure	04
5		the change in hardness.	
6		Perform Case hardening treatment for the given component.	04
7	V	Prepare guide pin on lathe machine	04
8	v	Prepare core insert for given product	04
Total			32

7. SUGGESTED LIST OF STUDENT ACTIVITIES

1. Students will collect information related to the experiment through internet.

2. Students will visit nearby mould making industry.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

i. Visit to nearby industries/workshops/metal treatment plants

ii. Video/animation films on working of different type of machine tools.

iii.Video/animation film on different treatments of metals.

9. SUGGESTED LEARNING ACTIVITIES

Sr. No.	Title of Book	Author	Publication
1.	Elements of Workshop Technology	Hajra & Choudhary	
2.	Elements to Metallurgy	Swaroop	
3.	Material Science & Processes	Hajra & Choudhary	
4.	Material Science & Metallurgy	O.P.Khanna	
5.	Basic Engineering Metallurgy	Keyser	
6.	Code of designation of steel	IS 1962-61	
7.	A textbook on Metallurgy	Biley	
8.	Workshop Technology Vol 1 & 2	Hajra Choudhary	
9.	Production Technology	Jain and Gupta	
10.	Production Technology	Rusinoff	
11.	Manufacturing Processes	Began	
12.	Production Technology	Lindsburg	

A. List of Books

B. List of Major Equipment/ Instrument

- i. Lathe machine
- ii. Drilling machine
- iii. Shaping machine
- iv. Milling machine
- v. Boring machine
- vi. Grinding machine
- vii. Metallurgical microscope
- viii. Hardness tester
- ix. Induction furnace

C. List of Software/Learning Websites

- i.http://www.lathemachinesindia.com/lathe-machine.html
- ii. http://www.hnsa.org/doc/pdf/lathe.pdf
- iii. http://www.hnsa.org/doc/pdf/milling-machine.pdf
- iv. http://uhv.cheme.cmu.edu/procedures/machining/CH8.PDF
- $v.http://www.efunda.com/processes/heat_treat/introduction/heat_treatments.cfm$
- vi.http://web.iitd.ac.in/~suniljha/MEL120/L4_Heat_Treatment_of_Metals.pdf
- vii. http://www.technologystudent.com/equip1/heat1.html

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Co-ordinator and Faculty Members from NITTTR Bhopal

- Dr. Anju Rawlley, Professor, Dept. of Applied Sciences
- Dr. Abhilash Thakur, Associate Professor, Dept. of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

PLASTIC MATERIALS-I (Code: 3332304)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	3 rd Semester

1. RATIONALE

The course deals with structures, properties & applications of plastic materials prepared by various polymerization techniques and compounding. The course will help students to understand uses of plastic materials for various applications in different industries as well as replacement of other engineering materials. It will also help to understand advance plastic materials and plastic product design in future.

2. COMPETENCY (Programme Outcome according to NBA Terminology):

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Select the relevant plastic materials to produce specified plastic product

3. Teaching and Examination Scheme

Teaching Scheme Total			Total Credits		Examination Scheme			
(1)	(III Hours)		(L+T+P)	Theor	y Marks	Practica	l Marks	Total Marks
L	Т	Р	С	ESE	РА	ESE	РА	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

4. COURSE DETAILS

Unit	Major Learning Outcomes (Course	Topics and Sub-topics
	Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
Unit – I Rheology	1a. Distinguish different types of plastic flow	1.1 Basics of plastic flow, Types of flow, Newtonian, Non-Newtonian, Pseudo-plastic, Dilatants, Bingham.
	1b.Understand rheology of material by model demonstration	1.2 Rheological properties, Temperature viscosity relation, Maxwell's Model
Unit– II Thermo Plastics	 2a. Classify thermoplastic materials 2b. Co-relate structure and properties of thermoplastic material 2c. List applications of thermoplastic 	 2.1Structure, properties and applications of the following Thermoplastic material a.Olefins: Polyethylene(LDPE,HDPE), Polypropylene (PP) b.Vinyls : Polyvinyl chloride (PVC), Polyvinyl acetate(PVAc), Polyvinyl alcohol(PVA) c. Styrenics: Polystyrene,Styrene acrylonitrile(SAN), Acrylonitrile butadiene styrene(ABS) d. Acrylics :Polymethyl methacrylate (PMMA), Polyacrylo nitrile(PAN) e. Cellulosics: Cellulose nitrate(CN), Cellulose acetate (CA)
Unit– III Thermo Sets	 3a. Classify thermo set materials 3b. Co-relate structure and properties of thermo set material 3c. List applications of thermo sets 	 3.1 Structure, properties and applications of fallowing Thermo set material a. Phenol formaldehyde(PF) b. Melamine formaldehyde(MF) c. Urea formaldehyde(UF) d. Epoxy e. Silicones f. Polyesters g. Furan h. Polyurethane resin(PUR) i. Diallyl phthalate(DAP)
Unit – IV Engineering Plastics	 4a.Classify thermo engineering plastic materials 4b.Compare properties of various engineering plastic material 4c.List applications of engineering plastic 	 4.1Structure, properties and applications of fallowing engineering plastic materials: a.Polyamides(nylon-6,6-6,6-12) b.Polytetrafluoroethylene(PTFE) c.Polyesters(PET,PBT) d.Polyurethane resin(PUR) e.Acetal(POM) f.Polycarbonate(PC)
Unit – V High Performance and Heat	5a.Classify High performance and heat resistant polymers	5.1 Introduction, Structure, properties and applications of fallowing High performance and heat resistant polymers: a.Polyetherketones(PEK)

n		
Unit	Major Learning	
	Outcomes (Course	Topics and Sub-topics
	Outcomes in Cognitive	
	Domain according to	
	NBA terminology)	
Resistant	5b.Compare properties	b.Polyetheretherketones(PEEK)
Polymers	of various High	c.Polyethersulfone(PES)
-	performance and	d.Polyphenyl sulfone(PPS)
	heat resistant	e.Polyphenylene Oxide(PPO)
	polymers	f.Polyvinyl dichloride(PVDC)
	5c. List applications of	
	High performance	
	and heat resistant	
	polymers	
	1 5	
Unit – VI	6a.Explain necessity of	6.1Introduction of compounding, Significance
Compounding	compounding	
	6b.Explain function of	6.2Additives, Types, Function
	additives	
	6c.Describe	6.3Compounding equipments, Constructional detail,
	compounding	Process, High speed mixer, Ribbon mixer, Ban burry
	equipments	mixer, Two roll mill

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.	Unit Title	Hours	R Leve l	U Leve l	A Leve l	Total Marks	
1.	Rheology	04	02	04	00	06	
2.	Thermo Plastics	12	10	05	03	18	
3.	Thermo Sets	08	08	03	03	14	
4.	Engineering Plastics	08	08	03	03	14	
5.	High Performance and Heat	06	05	03	02	10	
	Resistant Polymers						
6.	Compounding	04	02	03	03	08	
	Total	42	35	21	14	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical Exercise/Experiment (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx Hours Required
1	Ι	Demonstrate Maxwell's model	04
2	п	Perform identification tests of high density polyethylene(HDPE)	02
3	11	Perform identification tests of Polystyrene(PS)	02
4	ш	Perform identification tests of Epoxy	02
5	111	Perform identification tests of Urea formaldehyde(UF)	02
6	TV.	Perform identification tests of Polycarbonate(PC)	02
7	IV	Perform identification tests of Polyester	02
8	X7	Perform identification tests of Polyphenyl sulfone(PPS)	02
9	V	Perform identification tests of Polyphenylene Oxide(PPO)	02
10	VI	Perform compounding of Polyvinyl chloride(PVC)	04
11	V1	Perform compounding of Polypropylene(PP)	04
Total		·	28

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will collect different plastic raw materials as well as moulded products and would comment on their quality.
- ii. Students will collect information related to the experiment through internet.
- iii. Students will visit nearby plastic raw material suppliers shop.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Demonstration of samples of different type of materials in the class while teaching about the concerned material.
- ii. Mini projects to students about comparison of different type of materials.

9. SUGGESTED LEARNING ACTIVITIES

A. List of Books

Sr. No.	Title of Book	Author	Publication
1.	Plastics Material	J. A. Brydson	Butterworth-Heinemann 1982
2.	Plastics Material and Processes	S. S. Schwartz	
3.	Engineering Polymer source book	Margolis	
4.	PVC compounding	Swan	
5.	PVC compounding	Tittow	
6.	PVC compounding	A. S. Athaley	

B. List of Major Equipment/ Instrument

- i. Burner (Bunsen Burner)
- ii. Test tube (10 ML)
- iii. Beaker (250 ML)
- iv. Titration sets (Burette 50ML; Pipette 10ML.)
- v. High speed mixer
- vi. Ribbon mixer
- vii. Ban burry mixer
- viii. Two roll mill

C. List of Software/Learning Websites

- i. http://www.curbellplastics.com/technical-resources/pdf/plastic-material-selection.pdf
- ii. http://www.okw.co.uk/technical/Material_Specs.pdf
- iii. http://faculty.ksu.edu.sa/othman/CHE498/General%20Properties%20of%20Plastics.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, Govt. polytechnic, Chhotaudepur

Co-ordinator and Faculty Members from NITTTR Bhopal

- Dr. Anju Rawlley, Professor, Dept. of Applied Sciences,
- Dr. Abhilash Thakur, Associate Professor, Dept. of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

Technology for Injection Moulding (Code: 3332305)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	3 rd Semester

1. RATIONALE

The course enables the learning of the most widely used processing technique for plastic materials. It will help students to understand the injection moulding machines as well as process, troubleshoot processing problems, and produce a moulded product and finishing the product using post moulding operations. The course will help to understand other advance injection moulding processes. It is therefore one of the most important courses for plastic engineers.

2. LIST OF COMPETENCIES (Programme Outcome according to NBA Terminology):

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Operate an injection moulding machine safely.

3. Teaching and Examination Scheme

Teaching Scheme			Total Credits		Examination Scheme			
((III Hours) (I		(L+T+P)	Theory	Marks	Practica	l Marks	Total Marks
L	Т	Р	С	ESE	РА	ESE	РА	
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

4. DETAILED COURSE CONTENT

Unit	Major Learning	
	Outcomes (Course	
	Outcomes in	Topics and Sub-topics
	according to NBA	
	terminology)	
Unit – I	1a.Explain various	1.1 Specifications & glossary of terms viz,
Injection	parts of	Injection unit, Clamping unit, Machine types/
Moulding	injection	classification, Types, Constructional Features
Machines	moulding	and Function of Injection unit
	machine	a.Hopper
		b.Screw(terminology)
		d Nozzle
		e Screw tips
		f.Drive systems & its comparison (hydraulic &
		electrical)
		g.Heating & cooling of screw & barrel
	1h Compara	1 2Clamping unit Clamping machanism
	different	(hydraulic & toggle) and their comparison
	clamping	(hydraune & toggie) and then comparison
	mechanism	
Unit–II	2a.Select proper	2.1 Material selection criteria
Injection	material	2.2 Listing monthly and the Decomposition
Process	20.Operate injection	2.2 Injection moulding process, Process steps
1100055	machine	variables
	maemine	2.3 Trouble shooting. Start-up and shut-down
	2c.Trouble shoot	process steps, Advantages & disadvantages
	the injection	
	moulding	2.4 Injection moulding applications
	process	
	2d.Apply Injection	
	moulding	
	various products	
	2e. Perform post	2.5 Post moulding operations
	moulding	
	operations	
Unit – III	3a.Explain working	3.1 Basics of auxiliary. Hopper loader. Hopper
Auxiliary	of various	drier
Equipments	auxiliary	3.2Chilling plant, Cooling tower, Heat exchangers
	equipments	3.3Scrap grinders, Magnetic separators

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Di	stribution of Theory Marks			
No.		Hours	R Level	U Level	A Level	Total Marks	
1.	Injection moulding machines	20	14	12	08	34	
2.	Injection moulding process	14	08	10	04	22	
3.	Auxiliary equipments	8	04	06	04	14	
	Total	42	26	28	16	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Notes: - This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical Exercise/Experiment (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx Hours Required
1	т	Study of an injection moulding machine	04
2	1.	Compare hydraulic and toggle clamping mechanism	04
3		Operate an injection moulding machine	08
4		Determine cycle time of injection moulding machine for given product	04
5	II.	Measure the effect of process variables(temperature/pressure) on quality of end product in injection moulding process	08
6		Measure the effect of process variables(suck-back/Reduced Injection Pressure) on quality of end product in injection moulding process	08
7		Observe the processing problems and provide their remedies	08
8	III	Demonstrate various auxiliary equipments	08
9	111.	Grind scrap materials	04
Total			56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will collect injection moulded products and would comment on their quality.
- ii. Students will collect information related to the experiment through internet.
- iii. Students will visit nearby injection moulding industry.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Visit to nearby plastic industries engaged in injection moulding.
- ii. Video/Animation films on working of different type of injection moulding machines may be shown.
- iii. Mini project may be given to students on different defects in the products, reasons for these defects and possible remedies.

9. SUGGESTED LEARNING ACTIVITIES

Sr. No.	Title of Book	Author	Publication
1.	Injection Moulding	Irvin I Rubin	Wiley,1973(The University of Michigan)
2.	Injection Moulding Machines	Whealan	Elsevier Applied Science Publishers, 1984(The University of Michigan)
3.	Injection Moulding Machines	Jhonnabeer	Hanser Gardner Publications
4.	Handbook of Plastic Processing Technique	D.V. Rosato	Springer
5.	Plastics Engineers Handbook	J. Fradeos	Springer
6.	Injection Moulding Handbook	D V Rosato	Kluwer Academic Publishers

A. List of Books

B. List of Major Equipment/ Instrument

- i. Injection moulding machine
- ii. Scrap grinders
- iii. Crane
- iv. Moulds
- v. Chilling unit
- vi. Weighing scale
- vii. Cooling tower
- viii. Hopper loader

C. List of Software/Learning Websites

- a. www.technologystudent.com
- b. www.paulsontraining.com
- c. www.traininteractive.com/knowledge/previews/injection/
- d. www.people.bath.ac.uk/en3hl/inject

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. A. S. Amin**, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Co-ordinator and Faculty Members from NITTTR Bhopal

- **Dr. Anju Rawlley**, Professor, Dept. of Applied Sciences
- Dr. Abhilash Thakur, Associate Professor, Dept. of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ENTREPRENEURSHIP DEVELOPMENT (Code: 3340001)

Diploma Programme in which this course is offered	Semester in which offered
Bio-Medical, Ceramic, Plastic engineering	4 th Semester

1. RATIONALE

Entrepreneur creates new business establishments or transforms old business establishments thus they work as engines of growth and play an important role in the development of economy. Our fast growing economy provides ample opportunities for diploma engineers to become successful entrepreneur. As entrepreneurship requires distinct skill set which could not be developed while teaching technical subjects a separate course has been introduced for the same. This course aims at developing competencies in the polytechnic students for becoming a successful entrepreneur. After successfully completing this course some students may develop qualities of a successful entrepreneur and can set up their own manufacturing industry/ service industry/ business/ to become self employed. Thus they can generate wealth and share profits of the company to the share holders and provide employment to others. Thus it is an important course for all to learn.

2. COMPETENCIES

The course content should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

- Foster need for excellence orientation along with skill set for an entrepreneur.
- Identify a business opportunity and plan for its establishment.

3. COURSE OUTCOMES:

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Appreciate role of intrapreneurs and entrepreneurs in society.
- ii. Develop passion, creativity, initiative, independent decision making, calculated risk taking, assertiveness, persuasion, persistence, information seeking, commitment to work contract.
- iii. Innovate, prototypes or ideas by applying theory into practice.
- iv. Explain process of setting up of service unit/industry.
- v. Describe about support institutions and schemes.
- vi. Develop and complete a comprehensive business plan.

4. TEACHING AND EXAMINATION SCHEME

Teac	hing Sc	heme	Total Credits	Examination Scheme			ie	
()	In Hour	s)	(L+T+P)	Theory Marks		Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	100
3	0	0	3	70	30	00	00	100

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. DETAILED COURSE CONTENTS

∐nit	Major Learning Outcomes	Topics and Sub-topics
Omt	(in cognitive domain)	
Unit – I Entrepreneurship Development - Concept & Scope	 1a. Define intrapreneur/ entrepreneur. 1a1. Appreciate benefits of becoming an intrapreneur/ entrepreneur 1b. Identify various avenues of entrepreneurship. 	 1.1 Charms of becoming an intrapreneur/ entrepreneur. 1.2 Entrepreneurship : scope in local and global Market. Steps in setting up of a business. 1.3 Traits of successful intrapreneur/
	1c. Develop qualities of intrapreneur/ entrepreneur.	entrepreneur.
Unit – II Facility Planning	 2a. Describe the importance of Product selection 2a1Select a business opportunity. 2b Explain product life cycle 2b 1. Identify appropriate process for manufacturing/ delivery. 2c. Locate suitable place for setting up industry/ service unit. 2d. Estimate the capacity of a plant 	 2.1 Selection of Product/ Service, core competence, product life cycle, new product development process, mortality curve, creativity and innovation in product modification/development. 2.2 Process selection: Technology life cycle, forms and cost of transformation, factors affecting process selection. 2.3Factors affecting selection of location for an industry. Importance of material handling and its relevance with facility location. 2.4 Calculate capacity of plant and its relation with economies of scale. Including flexibility in capacity.
Unit – III Support agencies for MSME	 3a. Differentiate between MSM Enterprises & ancillary industries . 3b.Describe role of support agencies 3b1. Analyse different entrepreneurship, technical, marketing and financial support agencies. 	 3.1 Categorisation of MSME, ancillary industries 3.2 Support agencies for entrepreneurship guidance, training, registration. 3.3 Support agencies for technical consultation, technology transfer and quality control. 3.4 Support agencies for marketing and finance.
Unit – IV Managing critical resources	 4a. List sources of finance 4a1Describe type of finance sources 4a2 Explain methods of cost control 4a1. Compare suitability of financial institutes for an industry/ service unit. 4b. Apply MRP/JIT in production and services. 4c. Utilise time efficiently. 4d. Develop MIS. 	 4.1 Managing finance: Sources of finance- types, advantages and disadvantages, methods of cost control & importance, managing working capital. 4.2 Materials Management: MRP, JIT 4.3 Time management: art of managing time 4.4 Information system: Developing suitable information systems.

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
Unit– V Project planning	5. Prepare business plan and project reports	5.1 Preparation of business plan and techno economic feasibility study.5.2 Breakeven point, return on investment and return on sales.
Unit –VI Managing enterprise	6. List the steps to execute Marketing and supply chain plans .	6.1 Identifying a USP, developing a marketing plan,6.2 Developing supply chain, planning for initial orders
Unit –VII Risk Management	7. Manage risk in business7a1. Describe planning for calculated risk	7.1 Planning for calculated risk taking, initiation with low cost projects7.2 Integrated futuristic planning, angel investors, and role of incubation centres.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

		Taaching	Distribution of Theory Marks			
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks
Ι	Entrepreneurship Dev. Concept & Scope	07	2	4	6	12
II	Facility Planning	07	4	4	2	10
III	Support agencies for MSME	06	2	4	6	12
IV	Managing critical resources	08	2	3	7	12
V	Project planning	06	0	5	5	10
VI	Managing enterprise	05	0	4	4	08
VII	Risk Management	03	0	3	3	06
	Total	42	10	27	33	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

-----Not applicable------

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed activities, students should prepare a portfolio of the completed activities for future use:

- i. Develop two products from household waste (attach photographs).
- ii. Download product development and innovative films from internet.
- iii. Prepare a collage for "Traits of successful entrepreneurs."
- iv. Invite entrepreneurs, industry officials, bankers for interaction.
- v. Identify your hobbies and interests and convert them into business idea.
- vi. Convert you project work into business.

- vii. Choose a product and design a unique selling preposition, brand name, logo, advertisement (print, radio, television), jingle, packing, packaging, label for it.
- viii. Develop your own website. Share your strengths and weakness on it. Declare your time bound goals and monitor them on the website.
- ix. Choose any advertisement and analyse its good and bad points.
- x. Decide any product and analyse its good and bad features.
- xi. Select any product and prepare its cost sheet.
- xii. Choose any product and study its supply chain.
- xiii. Arrange brainstorming sessions for improvement of any product.
- xiv. Study schemes for entrepreneurship promotion of any bank.
- xv. Visit industrial exhibitions, trade fairs and observe nitty-gritty of business.
- xvi. Open a savings account and build your own capital.
- xvii. Organise industrial visit and suggest modifications for process improvement.
- xviii. Interview at least four entrepreneurs or businessman and identify
 - a. Charms of entrepreneurship and Traits of successful entrepreneurs.
- xix. Analyse case studies of any two successful entrepreneurs.

xx. Perform a survey and identify local resources available for setting up of an enterprise. xxi. Engage in marketing of products.

- xxii. Carry out a demand supply gap analysis for a particular product.
- xxiii. Organise a prototype development competition.
- xxiv. Arrange fairs, events in the institute and try for sponsorships.
- xxv. Select any performance criteria and continuously compete with yourself.
- xxvi. On any performance criteria continuously compete with others.
- xxvii. Foresee your dream and make a long term plan for its accomplishment.
- xxviii. Dream for something unique.
- xxix. Read articles, books on creativity.
- xxx. Using morphological analysis technique, reduce cost or increase quality of a product.
- xxxi. Conduct a market survey for a project. Collect data on machinery

specifications, price, output/hr, power consumption, manpower requirement, wages, raw material requirement, specification, price, competitor's product price, features, dealer commissions, marketing mix etc.

- xxxii. Prepare a business plan and organize a business plan competition.
- xxxiii. Select a social cause, set objectives, plan and work for its accomplishment.
- xxxiv. Video graph as many as possible from the above and upload on your website, YouTube, facebook etc.

9. SPECIAL INSTRUCTIONAL STRATEGIES

- i. Instructors should emphasise more on deductive learning.
- **ii.** Students should learn to recognise, create, shape opportunities, and lead teams for providing economic-social value to society.
- **iii.** Business simulations should be used to enhance behavioural traits of successful intrapreneurs and entrepreneurs amongst students.
- iv. Emphasis should be on creating entrepreneurial society rather than only setting up of enterprise.
- v. They must be encouraged to surf on net and collect as much information as possible.
- vi. Each student should complete minimum twenty activities from the suggested list. Minimum possible guidance should be given for the suggested activities.

- vii. Students should be promoted to use creative ideas, pool their own resources, finish their presentation, communication and team skills.
- viii. Alumni should be frequently invited for experience sharing, guiding and rewarding students.
- **ix.** Display must be arranged for models, collages, business plans and other contributions so that they motivate others.

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

S.	Title of Books	Author	Publication
No.			
1	Entrepreneurship	Robert D.	McGraw-Hill
		Hisrich	
2	Entrepreneurship and Small Business	S.S. Khanka	Sultanchand and
	Management		Sons
3	Organisational Behaviour	A K Chitale	PHI Learning
4	Managerial Practices	Nishith Dubey	Shiva Publication
5	Entrepreneurship Development Small	Poornima	Pearson Education
	Business Entrepreneurship	Charantimath	India
6	Entrepreneurship Development	S Anil Kumar	New Age International
			Publishers
7	Entrepreneurship Development	Nishith Dubey	PHI Learning
8	The Entrepreneurial Instinct	Monica Mehta	McGraw-Hill
9	Jugaad Innovation	Navi Radjou,	Random House India
10	Product Design & Manufacturing	A K Chitale	PHI Learning
11	Product Policy & Brand Management	Ravi Gupta	PHI Learning
12	Materials Management	R C Gupta	PHI Learning

B. List of Major Equipment/Materials

-----Not applicable------

C. List of Software/Learning Website

niesbud.nic.in/	www.entrepreneur.com	https://www.nabard.org/			
ecell.in/nec	nenonline.org	businesstoday.intoday.in			
www.ediindia.org	www.isb.edu/node/3461	www.entrepreneur.com/businessplan			
www.nstedb.com	www.tataises.com	www.dcmsme.gov.in/			
www.nimsme.org	www.nimsme.org www.kvic.org.in/ msme.gov.in/				
http://www.du.ac.in/file	eadmin/DU/Academics/cour	se_material/EP_01.pdf			
http://users.ipfw.edu/todorovz/teaching/eee-lectureslides.htm					
xa.yimg.com/kq/groups/20603649/2012869496//Entrepreneurship					
ocw.mit.edu > > Managing Innovation and Entrepreneurship					
ww.smallbusinessbc.ca	/starting-a-business/how-wr	ite-a-business-plan			

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>Faculty Members from Polytechnics</u>

• **Prof Niyaz A Mansuri**, Lecturer in Mechanical Engineering, GP, Gandhi nagar

Coordinator and Faculty Member from Nitttr Bhopal

• Dr. Nishith Dubey, Professor, Department of Vocational and Entrepreneurship Education

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: BLOW ROTATIONAL AND THERMOFORMING PROCESS (Code: 3342301)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	4 th Semester

1. RATIONALE

In almost every plastic plant or industry dealing with the production of hollow and thin walled plastic products, Blow moulding, Rotational moulding and Thermoforming processes have to be performed. A diploma plastic engineer has to understand and operate the machines, perform processes troubleshoot, deal with processing problems and finally produce a moulded product. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes in the students.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Plan and supervise the blow, rotational and thermoforming process.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Design various moulding process.
- ii. Select appropriate material for different moulding process.
- iii. Operate blow moulding process.
- iv. Operate rotational and thermoforming.
- v. Differentiate between blow moulding, rotational and thermoforming.
- vi. Troubleshoot processing problems in blow moulding, rotational and thermoforming.
- vii. Apply the safety rules.

Teaching Scheme			Total Credits	Examination Scheme				
((In Hou	rs)	(L+T+P)	Theory Marks Practical Marks		Marks	Total Morks	
	1	1			1		1	Marks
L	Т	P	С	ESE	PA	ESE	PA	
3	0	4	4	70	30	40	60	200

4. TEACHING AND EXAMINATION SCHEME

 $\label{eq:Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit; ESE-End Semester Examination; PA -Progressive Assessment$

5. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics			
LINIT I.	(in cognitive domain)	1 1 Blow Moulding Process			
UNIT I: Blow	Blow moulding processes	1.1 Blow Moulding Flocess			
Moulding	1 List types of Blow moulding	moulding			
Moulding	process	1.1.2 Types of Blow moulding			
	1c Compare Injection Blow	Process Injection Blow			
	moulding & Extrusion Blow	Moulding Extrusion Blow			
	moulding	moulding- intermittent &			
	1d State the Advantages &	continuous			
	disadvantages of process	1.1.3 Compare Injection Blow			
	Applications of Blow moulding	moulding & Extrusion Blow			
	process	moulding			
		1.1.4 Advantages & disadvantages			
		of process			
		1.1.5 Applications of Blow			
		moulding process			
	1e. List the Polymer	1.2 Materials For Blow Moulding			
	selection criteria	1.2.1 Polymer selection criteria			
	1f. State the various types of	1.2.2 Various types of materials			
	materials				
	Ig. Various types of materials for				
	blow moulding	1.2 Dises Marshine Mashine			
	in. Explain various parts of Blow	1.3 Blow Moulding Machine			
	1 Describe the Extruder & its	1.5.1 Extruder & fts			
	requirements	1.3.2 Die head & parison die			
	requirements	1.3.3 Die orifice and mandrel			
		design			
	1j. List the Parison blowing	1.4 Parison			
	systems	1.4.1 Parison formation			
	1k. Describe the calibration steps of	1.4.2 Parison blowing systems			
	Mandrel inflation-Top mandrel,	1.4.3 Needle inflation			
	Bottom mandrel systems	1.4.4 Mandrel inflation-Top			
	11. Explain parison blowing	mandrel, Bottom mandrel,			
	systems.	Top mandrel with calibration			
	1m. Describe the Control of parison	1.4.5 Parison programming and			
	wall thickness by programming	Parison wall thickness control			
	In. Describe the various process	1.5 Processing Parameters			
	process	1.3.1 various blow moulding			
	process	processing parameters			
	10. List the effects of process	1.5.2 Effects of process variables such			
	variables such as raw material.	as raw material, parison die. air			
	parison die, air entrance, mould	entrance, mould cooling &			
	cooling & parison wall thickness	parison wall thickness control			
	control	1.5.3 Post molding operations			
	1p. Describe Post moulding	1.5.4 Trouble shooting			
	operations				

	1q. List the fault in Blow Moulding	
	1r. Describe the Solutions fpr Blow	
	Moulding processing problems	
UNIT II:	2a. Describe Rotational moulding	2.1 Rotational Moulding Process
Rotational	process.	2.1.1 Process steps
Moulding	2b. State theAdvantages and	2.1.2 Advantages and disadvantages
8	disadvantages of Rotational	of Rotational moulding
	moulding	2.1.3 Applications of Rotational
	2c. List the Applications of	Moulding
	Rotational moulding	C
	2d. List Types of moulding	2.2 Materials
	materials	2.2.1 Moulding material
	2e. Describe Moulding material	requirements
	requirements	2.2.2 Types of moulding materials
	2f. Select the appropriate material	
	for Rotational moulding	
	2g. Identify various parts of	2.3 Rotational Moulding Machine
	Rotational moulding	2.3.1 Rock and roll machine
	machine	2.3.2 Clamshell
		2.3.3 Vertical machine
		2.3.4 Shuttle machine
		2.3.5 Fixed arm Carousel type
		machine
		2.3.6 Independent arm type machine
		2.3.7 Oil jacketed machine
		2.3.8 Electrically heated machine
	2h. Describe the steps of Design of	2.4 Rotational Moulds
	various Rotational moulds	2.4.1 Rotational molds design
	2i. List the Mould materials	2.4.2 Mould materials
	2j. State the importance of	2.4.3 Heating & cooling of mould
	Heating & cooling of mould	
	2k. Set processing parameters	2.5 Part Design
	21. Solve processing problems in	2.6 Process Variables
	Rotational moulding	2.7 Trouble Shooting
	2m. Differentiate the blow moulding	2.8 Comparison With Blow Moulding
	and rotational moulding	
UNIT III	3a Classify the	3.1 Thermotorming Process
Thermo	Thermoforming processes.	3.1.2 Various stages of
Forming	3b Describe the Various	thermotorming process
	stages of thermoforming	3.1.3 Explain various methods of
	process	Forming
	3c Explain various methods	3.1.4 Vacuum Forming
	20.1 Vacuum Forming	3.1.5 Pressure forming
	30.2 Prossure forming	5.1.0 Auvallages and disadvallages
	3d State the Advantages and	3 1 7 Applications of thermoforming
	Su State the Auvalitages and	Drocess
	thermoforming	1100055
	3e List the applications of	
	thermoforming process	
	Process	

3f	Select the appropriate	3.2 Materials	
	material for	3.2.1	Material requirements
	Thermoforming	3.2.2	Types of material
3g	List the types of	3.3 Thermofor	rming Machines
	thermoforming machines	3.3.1	Single-stage sheet fed
	3g.1 Describe various		machine
	Thermoforming	3.3.2	Multiple stage sheet fed
	machines		machine
		3.3.3	In-line sheet fed machine
		3.3.4	Continuous roll fed
			machine
		3.3.5	Packaging machines
3h	Explain processing	3.4 Processing	g Requirements
	requirements for	3.4.1	Heating methods
	thermoforming	3.4.2	Temperature control
		3.4.3	Vacuum/air pressure
		3.4.4	Cooling
		3.4.5	Trimming
3i	Set various process	3.5 Process V	ariables
	parameters for Thermoforming	3.6 Trouble S	hooting
	process	3.7 Compariso	on With Blow And
3j	Solve processing problems in	Rotational	Molding
	Thermoforming		
3k	Differentiate the blow,		
	rotational and thermoforming		
	process.		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks				
		Teaching Hours	R Level	U Level	A Level	Total Marks	
Ι	Blow Moulding	18	18	10	07	35	
II	Rotational Moulding	14	08	06	06	20	
III	Thermoforming	10	07	04	04	15	
	Total Hrs	42	33	20	17	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Notes:

This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical/Exercises	
	Number	(Outcomes' in Psychomotor Domain)	
			Reqd.
1	Ι	Demonstrate the constructional details of a blow moulding machine.	02
2	Ι	Determine cycle time for a given product for blow moulding process.	04
3	Ι	Set process parameters on a blow moulding machine.	04
4	Ι	Control wall thickness of parison by parison programming system.	04
5	Ι	Identify problem associate with Blow moulding process.	04
6	II	Demonstrate the constructional details of a rotational moulding machine.	02
7	II	Determine cycle time for a given product for rotational moulding process.	04
8	II	Set process parameters on a rotational moulding machine.	04
9	II	Identify various problems during Rotational moulding process.	04
10	II	Prepare comparison chart for blow moulded and rotational moulded products.	02
11	III	Demonstrate the constructional details of a Thermoforming machine.	02
12	III	Determine cycle time for a given product for Thermoforming process.	04
13	III	Set process parameters on a Thermoforming machine.	04
14	III	Identify various problems during Thermoforming process.	04
15	Ι	Plan preventive maintenance schedule for blow moulding machine	04
16	II	Plan preventive maintenance schedule for rotational moulding machine	04
		TOTAL	56

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Term work report content of each experience should also include following.
 - i. Experience description / data and objectives.
 - ii. Drawing of experience / setup with labels/nomenclature to carry out the experience.
 - iii. The specifications of machines / equipments / devices / tools /instruments /items/elements which is / are used to carry out and to check experience.
 - iv. Process parameters / setup settings' values applied to carry out experience.
 - v. Steps / Process description to execute experience.

- d. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 2 to 3 students.
- e. For ESE, students are to be assessed for competencies achieved.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Students will collect Blow moulded, Rotational moulded and Thermoformed products like bottle, jar, jerry can disposable dish etc. and would comment on their quality.
- ii. Students will collect information related to the experiment through internet.
- iii. Students will visit nearby industry having blow, rotational and thermoforming operations.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Visit to nearby plastic industries engaged in Blow, Rotational and Thermoforming.
- ii. Video/Animation films on working of different type of Blow, Rotational and Thermoforming process may be shown.
- iii. Mini project may be given to students on different defects in the various Blow, Rotational and Thermoforming products, reasons for these defects and possible remedies.

10. SUGGESTED LEARNING RESOURCES

Title of Books Publication Sr no. Author Blow Moulding of Plastics E. G. Fisher The Plastics Institute 1. Blow Moulding Handbook Rosato & Rosato Hanser Publishers 2. Van Nostrand Reinhold 3. Plastic Blow Moulding Handbook Norman Lee Company **Rotational Moulding** Glenn Beall Hanser verlag 4. 5. **Rotational Moulding of Plastics R.J.Crawford** Plastics Design Library William Andrew Publishing Wiley Interscience 6. Moulding of Plastics Norbert Bikales Handbook of Plastic Technology **CBS** Publishers & Distributors Allen & Baker 7. 8. **Plastic Materials and Processes** S.S.Schwartz & Van Nostrand Reinhold S.H.Goodman Company J.L.Frados Van Nostrand Reinhold 9. Plastic Engineering Handbook Company SPI Plastic Engineering Handbook M Berins Springer 10. Technology of Thermoforming J.L.Throne Hanser Publishers 11. Thermoforming- A Plastics G.Gruenwald 12. Technomic Publishing AG Processing Guide

(A) List of Books:

B. List of equipments:

- i. Blow moulding machine with parison programming system
- ii. Rotational moulding machine
- iii. Thermoforming machine with heating system for sheet
- iv. Scrap grinder

- v. Weighing scale
- vi. Stop watch

C. List of Software/Learning Websites:

- i. http://www.bpf.co.uk/
- ii. http://www.youtube.com
- iii. http://www.technologystudent.com/
- iv. http://www.notesandsketches.co.uk/Index.html
- v. http://www.paulsontraining.com
- vi. http://www.traininteractive.com
- vii. http://www.tecni-form.com/moulding-animation.php
- viii. http://www.rotomolding.net/rotomolding_demo.html
- ix. http://en.wikipedia.org/wiki/Rotational_molding
- x. http://rotomolding.blogspot.in/2007/09/great-rotational-moldinganimation.html
- xi. http://people.bath.ac.uk/en3hl/blow.html
- xii. http://www.kenplas.com/project/pet/petblow.aspx
- xiii. http://www.4spe.org/online-store/ten-fundamentals-thermoforming-videodvd-program

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. J. R. Desai, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- **Prof. N. C. Suvagya**, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences
GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: DESIGN FOR INJECTION MOULD

(Code: 3342302)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	4 th Semester

1. RATIONALE

A Plastic diploma engineer has to plan and supervise operations and maintenance of injection moulds. This competency requires the knowledge of different kinds of Injection Moulds. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCIES

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competencies:

- Design and draw machine Injection mould for a given product.
- Develop 2D and 3D mould drawings using AUTOCAD software.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire require learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Draw different views of injection mould.
- ii. Design the ejection system and cooling system for the given mould.
- iii. Estimate the movement of split in the mould.
- iv. Design mould on CAD software.
- v. Animate the design.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Exam		nination Scheme			
100	(In Hours	s)	Credits (L+T+P)	Theory Marks Practical Marks		l Marks	Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	200
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. DETAILED COURSE CONTENT

Unit	Major Learning Outcomes(in	Topics and Sub-topics
	cognitive domain)	
Unit – I	1a. Describe the selection	1.1 Introduction of Injection Mould
	requirement for mould	1.2 Mould Material Selection Requirements :
Injection Mold	materials.	1.2.1 Product Design Requirements
Materials	1h List the types of Mould	1.2.2 Mould Design Requirements
	ID. List the types of Mould Materials	1.2.3 Mould Making Requirements
	Materials	1.2.4 Moulding Requirements
		1.3 Types of Mould Materials
Unit- II	2a Explain various design	2.1 Injection Machine Requirements for fitment
	considerations for injection	of mould
General Mould	mold	2.2 Number of impressions
Design	2b Describe the Mould	2.3 Shrinkage Calculation - Linear and
Considerations	Assembling Procedure	Volumetric Shrinkage
	2c State the Mould Designer's	2.4 Venting Methods
	Check List	2.5 Taper Location Recess in Core & Cavity
	2d Describe the Mould	Plate
	Maintenance procedure	2.6 Limits, Fits & Tolerances For Mould Parts
	2e Estimate the Mould Cost	2.7 Mould Cost Estimation
	Estimation	2.8 Mould Assembling Procedure
		2.9 Mould Designer's Check List
		2.10 Mould Maintenance
Unit – III	3a.Differentiate the two-plate and	3.1 Two-Plate Mould:
	three plate injection mould.	3.1.1 Introduction of Two Plate Injection
Two Plate and	3b.Draw two-plate and three plate	Mould
Three Plate	mould.	3.1.2 Constructional Details of Two Plate
Injection	3c.Describe the construction of	Mould
Moulds	Two Plate Mould	3.2 Three-Plate Mould:
		3.2.1 Introduction
		3.2.2 Construction and Working : Stripper
		Plate Mould, Double Daylight
		Underfeed Mould, Double Daylight
		Underfeed-Stripper Plate Mould
		3.2.3 Opening Control Devices
		3.2.4 Runner Ejection Techniques
TT •4 TT7	A. Franking a section of the state in	3.2.5 Comparison with Two Plate Mould
\cup nit – 1V	4a. Explain constructional details	4.1 Significance of Split Mould Design
Salit Moulda	for spin mould.	4.2 Shaing Spiris & Guiding Plate Designs
Split Moulds	4b Draw the split mould	4.5 Constructional Details of Split Mould :
		4.3.1 Split Actuation Methods
		4.3.2 Split Locking Methods 4.3.3 Split Safety Arrangements
Unit V	5a Classify the specialized	4.5.5 Spin Safety Analgements
Omt - v	jniection moulds	5.1 Introduction
Specialized	injection moulds.	5.1.1 Introduction 5.1.2 Methods for Internally Threaded
specialized		5.1.2 Methous for internally Threaded

Unit	Major Learning Outcomes(in cognitive domain)	Topics a	nd Sub-topics			
Moulds		(Components: Fixed Threaded Core			
		Ι	Design, Stripping Method, Loose			
		1	Threaded Core and Unscrewing Method.			
		5.1.3 M	lethods for Externally Threaded			
		(Components: Fixed Threaded Cavity			
		Design, Automatic Unscrewing,				
		Stripping Method and Threaded Splits.				
		5.2 Hot Runner Moulds				
		5.2.1	Introduction			
		5.2.2	Internally Heated Hot Runner			
			Systems			
		5.2.3	Externally Heated Hot Runner			
			Systems			
		5.2.4	Insulated Hot Runner Molding			
			System			
		5.2.5	Advantages and Disadvantages			
		5.3 Intro	duction of Stack Moulds			
		5.4 Intro	duction of Interchangeable Insert			
		Mou	lds			

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.	Ho		R Loval	U Lovel	A Loval	Total Morily	
			Levei	Level	Level	wiarks	
Ι	Injection Mold Materials	4	4	4	0	8	
II	General Mould Design Considerations	8	4	5	4	13	
III	Two Plate and Three Plate Injection Moulds	14	7	8	8	23	
IV	Split Moulds	8	4	5	4	13	
V	Specialized Moulds	8	4	5	4	13	
	Total	42	23	27	20	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	S. No. Unit Practical/Exercises Number (Outcomes' in Psychomotor Domain)		Approx Hours Reqd.
1	III	Design sectional elevation, plan and inverted plan of Two Plate and Three Plate machine mould.	16
2	III	Draw detail drawing of mold drawn in sheet 1.	12
3	III	Design the sectional elevation, plan and inverted plan of Split Mold.	12
4	III	2D and 3D drawing of hand injection/machine injection mold using AUTOCAD.	16
TOTAL	·		56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will collect different shaped injection molded articles and analyze the type of mould suitable for that product.
- ii. Students will collect information related to mould through internet.
- iii. Students will visit nearby mould making industry.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any)

- i. Show video/animation films and photographs depicting process of producing different plastic objects using different types of injection moulding machines.
- ii. Arrange visit to nearby injection moulding industry and discuss the various defects in moulded objects and remedial measures for the same.

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

SR.	TITLE OF BOOK	AUTHORS	PUBLICATION
NO.			
1	Injection Mould Design	R.G.W. Pye	Longman Scientific & Technical
2	The Complete Part Design Handbook	Alfredo Campo	Hanser Gardner Publications (2006)
3	Plastics Mold Manufacturing Handbook	Dubois & Pribble	Van Nostrand Reinhold
4	Plastics : Product Design and Process	Harold Belofsky	Hanser-Gardner Publications
	Engineering		
5	Injection Mould Design Fundamentals	Denton & Glenvill	Industrial Press
6	Injection Moulding	Irvin I. Rubin	Wiley
7	Plastic Materials & Processes	S.S.Schwartz &	VanNostrand Reinhold
		S.H.Goodman	
8	Plastic Engineering Handbook	M Berins	Van Nostrand
9	Injection Moulding Handbook	Rosato & Rosato	Kluwer Academic Publishers
10	Workshop Technology	Khurmi & Gupta	S. Chand Limited

B. List of Major Equipment/Instruments

Injection Moulding Machine (Educational/training Model)

C. List of Software/Learning Websites:

- i. AutoCAD
- ii. http://www.ferris.edu/htmls/academics/course.offerings/hillm/myweb7/Basic%20Molds/ Basic%20Molds.htm
- iii. http://en.wikipedia.org/wiki/Injection_molding

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- **Prof. J. R. Desai**, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- **Prof. B. I. Oza**, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

COURSE TITLE: HYDRAULIC & PNEUMATIC SYSTEMS

(Code: 3342303)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	4 th Semester

1. RATIONALE

A Plastic Diploma engineer has to supervise operations and maintenance of various molding machines like injection molding, blow molding, thermoforming, extruder, rotational molding. This competency requires the knowledge of construction and working of different components of hydraulic and pneumatic systems. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Identify and solve various Hydraulic and Pneumatic problems.

3. COURSE OBJECTIVES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Draw symbols used in hydraulic systems.
- ii. Operate different types of valves used in hydraulic systems
- iii. Classify the valves used in hydraulic systems.
- iv. Maintain different valves and auxiliaries.
- v. Assemble pumps and motors to rectify problems.
- vi. Develop efficient hydraulic circuits.
- vii. Maintain the pneumatic and hydraulic system

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Exa		camination Scheme			
100	(In Hours	s)	Credits (L+T+P)Theory MarksPr		Theory Marks Practical Marks		l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	150

GTU/NITTTR/Bhopal/13-14

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics						
	(in cognitive domain)							
Unit – I	1a. Define various concepts of hydraulics.	1.1 Introduction & Definitions of important terms like Hydraulics, Pressure, Force, Vacuum etc.						
Basic Concepts		1.2 Pascal's Law and its Application to Hydraulics						
of Hydraulics		1.3 Bernoulli's Principle						
		1.4 Hydraulic Jack						
		1.5 Hydraulic Symbols						
		1.6 Advantages and Disadvantages of Hydraulic						
		System.						
		1.7 Hydraulic Oil						
		1.7.1 Purpose of Hydraulic Oil						
		1.7.2 Ideal Characteristics of Hydraulic Oil						
		1.7.3 Maintenance of Hydraulic Oil						
Unit- II	2a. Classify the accessories	2.1 Connectors						
	use in hydraulic system	2.1.1 Steel pipe						
Accessories of		2.1.2 Tubing						
Hydraulic		2.1.3 Hose						
System		2.2 Gauges						
		2.5 Facking & Stais						
		2.4 Princip & Strainers 2.5 Hydraulic Tank						
Unit – III	3a. Identify various valves	3.1 Directional Control Valves						
	and auxiliaries.	3.2 Pressure Control Valves						
Hydraulic	2h Destifies the small lance	3.3 Flow Control Valves						
Valves And	3b. Rectify the problems.	3.4 Pressure Intensifiers						
Auxiliaries		3.5 Accumulators						
		3.6 Cartridge Valves						
Unit – IV	4a. Describe the	4.1 Pump Specifications						
** 1 11	constructional details of	4.2 Construction & Working of						
Hydraulic Deserved and	pumps and motors.	4.1.1 Gear Pump						
Fumps and Motors	4b. Identify the problems	4.1.2 vane Pump						
MOIORS		4.1.5 Kadial Piston Pump						
		4.5 Fump Mannenance & Houble Shooting						
		4.5 Construction & Working of						
1								

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
		4.5.2Vane Motor4.5.3Radial Piston Motor
Unit – V	5a Classify the hydraulic circuits.	5.1 Clamp Control Circuit5.2 Injection Control Circuit
Hydraulic Circuits	5b Develop Hydraulic Circuits.	 5.3 Reciprocating Screw Circuit 5.4 Oil Filtration Circuit 5.5 Deceleration Circuit 5.6 Prefill Circuit 5.7 Hydraulic Motor Circuit 5.8 Hi-Low Pump Circuit
Unit – VI	6a. Identify various	6.1 Pneumatics 6.2 Comparison with Hydraulic System
Pneumatics	b. Differentiatepneumatic andhydraulic system.	 6.3 Air Compressors: Single Acting and Double Acting 6.4 Components of Pneumatic System 6.5 Air receiver and pressure control 6.6 Stages of Air Treatment 6.6.1 Intercooler 6.6.2 Lubricator 6.6.3 Filter 6.6.4 Air dryer 6.7 Pneumatic Circuit for Plastic Processing Machine

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours				T. ()
			R Level	U Level	A Level	l otal Marks
Ι	Basic Concepts of Hydraulics	8	4	6	4	14
II	Accessories of Hydraulic System	5	3	4	0	7
III	Hydraulic Valves And Auxiliaries	12	7	7	7	21
IV	Hydraulic Pumps and Motors	5	2	3	2	7
V	Hydraulic Circuits	8	0	7	7	14
VI	Pneumatics	4	3	4	0	7
	Total Hrs	42	19	31	20	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

GTU/NITTTR/Bhopal/13-14

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

S. No.	Unit	Practical/Exercise	Approx
	Number	(Outcomes' in Psychomotor Domain)	Hours Reqd
1	Ι	Draw graphical symbols.	2
2	Ι	Demonstrate application of Pascal's law in hydraulic system.	2
3	II	Demonstrate various accessories and their uses in hydraulic system.	2
4	III	Demonstrate use of directional control valves	4
5	III	Demonstrate use of pressure control valves.	4
6	III	Demonstrate use of pressure intensifier.	2
7	III	Demonstrate application of flow control valves.	2
8	IV	Demonstrate applications of various types of pumps.	2
9	IV	Demonstrate use of hydraulic motors.	2
10	V	Demonstrate application of injection control circuit.	2
11	V	Demonstrate use of clamp control and reciprocating screw circuits.	2
12	VI	Demonstrate application of single stage compressors.	2
TOTAL			28

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will prepare chart of different hydraulic symbols.
- ii. Students will collect information related troubleshooting various problems.
- iii. Students will search animations on internet for understanding functioning of various hydraulic and pneumatic components.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any)

Show video/animation films depicting working principles, constructional features and maintenance procedures of different hydraulic and pneumatic devices and systems.

10. SUGGESTED LEARNING RESOURCES

A. List of Books

Sr.	Title Of Book	Authors	Publication	
No.				
1	Industrial Hydraulic Manual	-	Vickers	
			(Second Edition)	
2	Injection Moulding	Irvin I. Rubin	Wiley	
3	Hydraulics and Pneumatics	Andrew Parr	Elsevier	
			(Third Edition)	
4	Injection Moulding Machine	Whelan	Elsevier Applied Science	
5	Hydraulic and Pneumatic Power and	Franklin D. Yeaple	McGraw-Hill	
	Control			

B. List of major equipment/instruments

- i. Hydraulic Jack
- ii. Hydraulic Trainer

C. List of Software/Learning Websites

- i. www.redoaksys.com (for animations)
- ii. www.boschrexroth.com
- iii. www.eaton.in (Vickers)
- iv. www.compair.com/products/compressor_training_animations.aspx

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. J. R. Desai, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- **Prof. B. I. Oza**, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GTU/NITTTR/Bhopal/13-14

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PLASTICS EXTRUSION TECHNOLOGY (Code: 3342304)

Diploma Programmes in which this course is offered	Semester in which offered
Plastic Engineering	4 th Semester

1. RATIONALE

Plastics extrusion technology is the most widely used processing technique for plastic materials. A polytechnic diploma engineer has to use this technology in the extrusion machines and production process of various extruded products. The knowledge of extrusion technology will also help to understand and develop advance extrusion processes. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Operate various extrusion plants to obtain production of desired quality (by setting process parameters)

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Sketch the extruder.
- ii. Set up the process parameters
- iii. Operate the extruder machine.
- iv. Design extruder screws for different plastic materials.
- v. Calculate the capacity of an extruder.
- vi. Judge the quality of an extrudate.
- vii. Perform finishing operations.

viii.Operate auxiliary equipments.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme			Total		Examin	ation Scl	on Scheme			
(In Hours)		Credits	Theory Marks		Theory Marks		Pra	ctical	Total	
			(L+T+P)					Ma	ırks	Marks
L	Т	Р	С	ESE	PA	ESE	PA			
3	0	4	7	70	30	40	60	200		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. DETAILED COURSE CONTAINTS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Classify extruder machine.	1.1 Machine Specification and glossary
Extruder	1b.Identify various parts of an	of terms
Machine	extruder machine.	1.2 Classification of Extruder Machines.
		1.3 Types, Constructional Features and
		Function of
		1.3.1 Screw
		1.3.2 Barrel
		1.3.3 Thrust bearing
		1.3.4 Drive system
		1.3.5 Hopper
		1.3.6 Screen
		1.3.7 Breaker plate
		1.3.8 Heating system of screw and
		barrel
		1.3.9 Cooling system of screw and
		barrel
Unit – II	2a. Select appropriate	2.1 Material characteristics and
Extrusion	material.	selection criteria
Process	2b. Operate an extruder.	2.2 Types of Extrusion process: Dry
	2c. Apply extrusion process	and Wet
	for various products.	2.3 Melting process
	2d. Identify the problems	2.4 Equation of output
	during extrusion process	2.5 Process variables
		2.6 Start-up and Shut-down of extruder
		2.7 Post extrusion techniques
		2.8 Trouble shooting of Manufacturing
		Process
		2.9 Applications – Products of
		Extrusions
UNIT III:	3a.	3.1 Manufacturing Processes and Line
Extrusion	Operate various	Diagram of :
Plants	extrusion plants.	3.1.1 Film
		3.1.2 Pipe
		3.1.3 Sheet
		3.1.4 Profile
		3.1.5 Wife/cable
		3.1.0 Mononiaments
		3.1.7 Coating-familiation
TINIT IN.	40	5.1.0 Patientzing
	4d. Evoloin working of	4.1 Automatic Teeding
Auximary Equipments	Explain Working Of	4.2 Automatic Screen
Equipments	various auxiliary	4.5 Kotating Die
	equipments.	4.4 Oscillating natil-off

Unit	Unit Title	Teachin	Distribution of Theory Mark			
No.		g Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Extruder machine	16	10	10	08	28
II	Extrusion process	12	10	06	04	20
III	Extrusion plants	10	08	04	03	15
IV	Auxiliary equipments	04	04	03	00	07
	Total Hrs	42	32	23	15	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S No	Unit	Practical Exercises	Hrs.
5.110.	No.	(Outcomes' in Psychomotor Domain)	Required
1	т	Study of an extruder machine and prepare a report on it.	04
2	1	Prepare specifications of extruder machines available in the laboratory.	04
3		Operate pipe extrusion plant with changing various process parameters.	08
4		Identify processing problems on an extrusion pipe plant and suggest solutions.	04
5	TT 9-	Operate blown film extrusion plant with changing various process parameters.	08
6	III	Identify processing problems on blown film plant and suggest their solutions.	04
7		Operate pelletizing plant with changing various process parameters.	08
8		Identify processing problems on pelletizing plant and suggest solutions.	04

9	Set process parameters on sheet plant and operate it.		
10		Identify processing problems on sheet plant and suggest solutions for it	04
11	IV	Demonstrate various auxiliary equipments used in extrusion plant.	04
12		Grind scrap materials.	04
		Total	64

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

i.Students will collect various extruded products like pipe, tube, wire/cable, film, monofilament etc. and would comment on their quality.

ii.Students will collect information related to the extrusion process through internet.

iii.Students will visit nearby extrusion industry.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Visit to nearby plastic industries engaged in extrusion.
- ii. Video/Animation films on working of different type of extrusion plant may be shown.
- iii.Mini project may be given to students on different defects in the various extruded products to find out reasons for these defects and possible remedies.

10. SUGGESTED LEARNING RESOURCES

A.	List	of	Books
----	------	----	-------

S. No.	Title of Book	Author	Publication	
1.	Extrusion of plastics	E.G. Fisher	The Plastics Institute	
2.	Extrusion	Allen Griffith		
3.	Plastics Extrusion technology handbook	S.Levy	Industrial Press Inc., 1989	
4.	Handbook of Plastic Processing Technology	D.V.Rosato	Springer	
5.	Plastics Extrusion Technology	Fried helm Hence	Hanser Publishers	
6.	Polymer Extrusion	Chris Rauwendaal	Hanser Verlag	
7.	Plastics Engineering Hand book	J. Fradeos	Van Nostrand Reinhold Company	
8.	Plastics Engineering Hand book	M Berins	Springer	
9.	Plastic materials and processes	S.S.Schwartz & S.H.Goodman	Van Nostrand Reinhold Company	

B. List of Major Equipment/ Instrument with Broad Specifications

i.Extrusion plants (Pipe, blown film, pelletizing/sheet plant) ii.Scrap grinders iii.Crane iv.Dies v.Chilling unit vi.Weighing scale vii.Cooling tower viii.Automatic feeder

C. List of Software/Learning Websites

i. http://www.bpf.co.uk/
ii. http://www.youtube.com
iii.http://www.technologystudent.com/
iv.http://www.notesandsketches.co.uk/Index.html
v. http://www.paulsontraining.com
vi.http://www.traininteractive.com
vii.http://en.wikipedia.org/wiki/Plastics_extrusion
viii.http://en.wikipedia.org/wiki/Plastics_extrusion

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. J. R. Desai, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- **Prof. M. K. Thakarar**, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROCESS INSTRUMENTATION AND MAINTENANCE (PIM) (Code: 3342305)

Diploma Programmes in which this course is offered	Semester in which offered
Plastics Engineering	4 th Semester

1. RATIONALE

Plastic engineering machineries and processes are now very much automated. And hence, the knowledge of instruments is essential for a plastic engineer. This subject provides the knowledge of measurement and control of plastic processing parameters. Moreover, the subject also deals with maintenance methods for machinery and helps plastic diploma holders in appreciating safety rules and do the routine maintenance. Hence this course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Troubleshoot and maintain different plant machineries and various instruments safely

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Operate various measuring and controlling instruments
- ii. Explain the fundamentals of servomechanism and PLC systems
- iii. Perform plant maintenance and break- down maintenance.
- iv. Apply preventive maintenance schedule
- v. Maintain lubricating mechanisms for prevention of wear, corrosion.
- vi. Organize safety equipments/aids that are to be used during plastic processing.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total			Total		Examin	nation Scl	neme	
(In Hours)		Credits (L+T+P)	Theory Marks		S Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; PA - Progressive Assessment.

5. DETAILED COURSE CONTENT

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Select appropriate measuring	1.1 Introduction to instrumentation
Instrumentation	instrument	1.2 Selection of measuring instruments
fundamentals	1b. Rectify the instrumental errors.	1.3 Errors in instruments
	1c. Draw the diagram of instrument	1.4 Block diagram of instrumentation
	system	system
UNIT- II	2a. Differentiate between	2.1 Temperature measurement and scales
Process	measuring instruments.	2.2 Thermocouple & resistance
Instrumentation	2b. Utilize various measuring	thermometer
	instruments.	2.3 Pressure measurement instruments
	2c. Calibrate various instruments.	2.4 Transducers
	2d. Use the transducers	
UNIT- III	3a. Differentiate open and close	3.1 Open & close loop control system
Servo	loop controls systems	3.2 Regulators & servo-mechanism
mechanisms &	3b. Apply servomoters	3.3 Servomotors
PLC system	3c. Describe the working of PLC	3.4 PLC control system
	systems	
UNIT- IV	4a. Classify various maintenances	4.1 Types of maintenance
Plant	4b. Prevent equipments from	4.2 Fault finding methods
maintenance	beak down	4.3 Planning & Scheduling of
	4c. Manage maintenance	maintenance work
	schedules	4.4 Maintenance cost and economy
	4d. Repair the machine	4.5 Service life of equipments
UNIT - V Ween	5a. Apply various techniques to	5.1 Wear types and reduction techniques
Corrosion &	reduce wear	5.2 Corrosion and its types
Lubrication	50. Select appropriate preventive	5.3 Corrosion prevention techniques
	5. Predict the quentity	5.5 Lubrication methods
	Jubricants	5.5 Euonearion methods
	5d Apply the lubrication	
	methods	
UNIT-VI	6a Organize maintenance	6.1 Maintenance of an Extruder
Maintenance of	activities for any plastic	6.2 Maintenance of an Injection
Plastics	processing plant.	Moulding machine
processing	6b. Prepare maintenance chart.	6.3 Maintenance of Moulds & dies
machines	6c. Identify the faults.	6.4 Maintenance of cooling / chilling
		plants
		6.5 Maintenance of Hydraulic &
		pneumatic systems
UNIT-VII:	7a. Appreciate the need of safety	7.1 Importance of safety
Safety	7b. Apply safely rules	7.2 Major safety measures in plastics
	7c. Organize various safety	processing plants
	awareness programmes	7.3 Management responsibilities
	7d. Prevent accidents	7.4 Accidents and its prevention
	7e. Use various protective	7.5 Activities related to promotion of
	equipments	safety
		7.6 Safety awareness measures
		7.7 Personal Protection Equipments

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Instrumentation fundamentals	04	02	03	00	05	
II	Process Instrumentation	08	05	05	05	15	
III	Servo mechanisms & PLC system	06	05	05	00	10	
IV	Plant maintenance	06	02	02	06	10	
V	Wear, Corrosion & Lubrication	06	05	03	02	10	
VI	Maintenance of Plastics processing	06	03	02	05	10	
* * * *	machines	0.6	0.2	0.0	0.4	10	
VII	Safety	06	03	03	04	10	
	Total	42	19	23	22	70	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF PRACTICAL/EXERCISES

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical /Exercises (Outcomes in Psychomotor Domain)	Approx Hours. required
1	II	Demonstrate working principle and constructional features of Bi-	02
		metallic thermometer	
2	II	Calibrate a given thermocouple.	02
3	II	Calibrate a RTD.	02
4	III	Carryout plant maintenance of Moulds & dies	04
5	III	Carryout plant maintenance of Hydraulic & pneumatic systems	02
6	IV	Prepare list of activities of preventive maintenance.	02
7	IV	Perform preventive maintenance of Injection molding machine	02
8	IV	Find and resolve the problems in any plastic processing machine	02
9	IV	Apply lubrication to IMM, extruder	02
10	VI	Carryout plant maintenance of extrusion plant.	04
11	VI	Carryout plant maintenance of Injection molding machine	04
		Total	28

GTU/ NITTTR Bhopal/13-14

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as: i.measurement of pressure and temperature

- ii.calibrate instruments
- iii.greasing machines
- iv.Removing rust from machines, molds, dies.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any)

- i. Show video/animation films depicting the working principle and their constructional features of different process instrumentations being used in plastic industry.
- ii. Arrange a visit to nearby plastic industry and show them different preventive and breakdown maintenance activities being carried out.

10. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication
1.	Industrial Instrumentation & Control	S.K.Singh	Tata McGraw Hill Publications Co.Ltd
2.	Industrial Instrumentation	Donald P.Eckman	Wiley Eastern Ltd
3.	Hand Book of Instrumentation and control	H.P.Kallen	McGraw Hill Company Ltd.
4.	Maintenance Engineering Hand Book	Higgins & Morrow	McGrow Hill
5.	Plastics Industry Safety Hand Book	Dominick V.Rosato & John R. Lawrence	Cahners Books,Boston
6.	Industrial safety, Health and Environment Management system	R. K. Jain & Sunil S. Rao	Khanna Publishers
7.	Electrical Safety, Fire Safety Engineering and Safety management	S. Rao & Prof. H.L. Saluja	Khanna Publishers

A. List of Books

B. List of Major Equipment/ Instrument with Broad Specifications

i.Thermocouple ii.RTD

C. List of Software/Learning Websites

i.http://lorien.ncl.ac.uk/ming/dept/Swot/connotes.htm

ii.http://nirmauni.ac.in/process-instrumentation-and-control---1ecd03/course-contents/lecturenotes

- iii. www.processinst.com
- iv.http://www.automation.siemens.com/mcms/automation/en/sensor-systems/processinstrumentation/Pages/Default.aspx
- v.www.scribd.com/doc/62796183/Instrumentation-Presentation
- vi.http://pc-education.mcmaster.ca/Instrumentation/go_inst.htm

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. J. R. Desai, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY

COURSE CURRICULUM

Course Title: INDUSTRIAL TRAINING-I (Code: 3352301)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	5 th

1. RATIONALE

The diploma engineers are required to work in industry related to plastic processing, machine manufacturing, plastic raw material manufacturing, mold and die making, testing, recycling, designing etc. This course has been designed to fulfill need of industrial exposure, where they experience industrial environment.

2. LIST OF COMPETENCIES

The course is designed and implemented with the aim to develop different types of skills leading to achieve following competencies:

Perform many activities/skills and get information pertaining to plastic industry in areas of process, equipment, material and instruments.

3. COURSE OUTCOMES

- > Experience real life working environment and practices.
- ➤ Gain practical knowledge, new skills and be aware of current technologies.
- Provide opportunities to students to be as prospective employees.
- Analyze problems and find/suggest possible solutions.
- Present a project report both in oral and written from based on work experiences.

		Teaching		ing	Total	Examination Scheme						
	Course Title	Scheme			Credits	Theory		Theory		Practical		Total
Course Code		(In Hours)		urs)	(L+T+P)	Marks		Marks		Marks		
		L	Τ	Р	С	ESE	PA	ESE	PA			
3352301	3352301 INDUSTRIAL TRAINING-I		0	30	30	00	00	300	500	800		
Total		0	0	30	30	00	00	300	500			

4. TEACHING AND EXAMINATION SCHEME

Legends:

L-Lecture; T-Tutorial; P-Practical; ESE – End Semester Exam., PA-Progressive Assessment,

5. EVALUATION PATTERN

Evaluation for PA by the Internal examiner: - Evaluation of 500 marks for PA will be done by the internal examiner at institute level, mainly based on weekly diary, follow up report, progress report and final training report as follows:

INDUSTRIAL TRAINING

20 - 20

DEPARTMENT: PLASTIC ENGINEERING

NAME OF STUDENT:-SEMESTER: - 5TH ENROLLMENT NUMBER : NAME OF INDUSTRY:-

ADDRESS:-

JOINING REPORT						
FROM: (Name of company)						
TO,						
PRINCIPAL						
(Name of institute)						
Subject: - Joining report for industrial training of 5 th semester. As per your letter no. :-						
Dated / / 201 , I have reported for training at						
on The weekly off day of the industry is						
Thanking you.						
Yours' faithfully						
()						
Signature and Stamp of Training Officer						

(To be send immediately after joining the industry)

DETAIL OF THE INDUSTRY

- 1. NAME OF INDUSTRY:-
- 2. ADDRESS:-
- 3. PERIOD OF TRAINING:-
- 4. NAME OF TRAINING OFFICER AND DESIGNATION:-
- 5. WEEKLY OFF DAY:-

WEEKLY REPORT

PERIOD: - FROM / /201 =DAYS OFF DAYS: -..... =DAYS LEAVE ENJOYED ON =DAYS TOTAL DAYS ATANDED...... =DAYS DETAILS OF WORKING:-

SIGNATURE (TRAINING OFFICER) SIGNATURE (STUDENT)

EAVI TOTAI	E ENJOYED ON L DAYS ATANDED UATION:-	==	DAYS DAYS DAYS
		EVALU	ΓΙΟΝ BY
SR No.	PARTICULARS	TRAINNG OFFICER (INDUSTRY)	FACULTY (INSTITUTE
1	Punctuality		
2	Participation in work allotted		
3	Practical level attained		
4	Industrial relationship		
5	Project write - up preparation		

MONTHLY REPORT

Any other remarks:-

SIGNATURE (FACULTY)

PROGRESS REPORT										
(Name of Institute) PLASTIC ENGINEERING DEPARTMENT										
Name of Student	:									
Enrolment No.	:									
Name of Industry	:									
Address of Industry	:									
Comments	: 1.	Type of the Industry								
		Production	Machine Ma	anufacturing						
	2.	Production of :								
	3.	Regularity of student dur	ing training							
		Average	Good	Excellent						
	4.	Stipend paid per month R	.S							
	5.	Industry's opinion regard	ling trainee							
Remarks	:	Average	Good	Excellent						

Sign:

Name of faculty:

Training In-charge

(Industry)

Final Training Report:

	FORMAT OF INDUSTRIAL TRAINING REPORT
	Title page
\succ	Certificate
\triangleright	Preface
\triangleright	Acknowledgement
\triangleright	Index
\triangleright	Introduction of industry
\triangleright	Industry lay out
\triangleright	Hierarchy of industry/organization chart.
\triangleright	Products
\triangleright	Raw materials
\triangleright	Types of major equipments/instruments/machines used in industry with
	their specification, approximate cost and specific use.
\triangleright	Manufacturing/production process
\triangleright	Faults and remedies
\triangleright	Maintenance
\triangleright	Safety features
\triangleright	My liking & disliking of work places
\triangleright	References
\triangleright	Bibliography

Evaluation for ESE by the External examiner: - Evaluation of 300 marks for ESE will be done by the external examiner on following criteria -

1. Knowledge gained-

> Products

- ➢ Raw materials
- Types of major equipments/instruments/machines used in industry with their specification, approximate cost and specific use.
- Manufacturing/production process
- Faults and remedies
- Maintenance
- Safety features
- Planning

2. Skills learned-

- Process parameter setting of various plastics machineries
- > Troubleshooting
- Safety precautions

3. Incidents/ cases from Experiences-

- The students should record classic cases for learning for others, such as
- Tricky problems and their solutions,
- > Typical fault diagnosis and their solutions,
- > Tricky symptoms and their solutions.
- Part modifications.
- System modifications.
- Cost reduction cases.
- Quality improvement.
- Improvement Method

6. SUGGESTED WORK LOAD

- As per the Board of Apprenticeship, faculty of the parent institute has to visit industry at least once in a month for evaluating student's activity and their progress.
- The number of industry which provides training and number of students are varying every year. In this consequence and considering role of faculty in training, workload is allotted to faculty for industrial visit.
- Work load allotted to faculty per batch of 20 students is 30 Hrs / week. Institute has to prepare time table of the staff in such a manner that one faculty must be remain free for one whole day for industrial visit/counseling of the trainee. Trainee should be distributed equally among the faculty involved and the faculty will be considered guide/counselor for those students. Progressive assessment will be carried out by that guide/counselor.

7. GUIDELINES FOR SANDWICH APPRENTICESHIP INDUSTRIAL TRAINING-I

- Duration of the training: Six months. It should start within three weeks from the date of completion of GTU examination of the semester IV.
- Eligibility: Student will be allowed for training subject to GTU eligibility criteria for particular semester.
- Apprenticeship Board: The training will be covered under the Apprenticeship Act 1973 and as per current rule; the trainee will be eligible for a stipend of Rs. 2070/- per month out of which 50% will be paid by the employer and 50% will be reimbursed by Board of Apprentice Training (BOAT), Western Region, Mumbai. Stipend will be revised periodically by Board of Apprentice.

Training Area : Students can be trained in Plastic Processing, Machine Manufacturing, Raw Material Manufacturing, Mould/die making, Testing, Recycling and Designing industries. Students should be sent to industry strictly based on merit.

A. ROLE OF DEPARTMENT

- Department has to send training request letter to various industries well in advance before commencement of training.
- After getting sufficient number of seats from the industries, students will be placed in different industries for their 5th semester training.
- Students will have to fill up training contract form (uploaded on B.O.A.T. web site) in three copies with photographs sealed and signed by the authorities.
- Department will issue an order letter to industry for the said training mentioning the name and registration number of students.
- During the training period, the head of the department will maintain a schedule for follow -up of industrial training and according to it send the faculty to various industries.
- The faculty will check the progress of the student in the training, attendance; discipline and project report preparation and also give necessary guidance to students.
- > The department has to prepare Progress Report of the trainee for the industrial training.
- > At the end of the training, concerned faculty will do assessment of the work done by trainee.

B. ROLE OF INDUSTRY

- > Industry will give effective training to the students for improving their practical skills.
- > Industry may provide training in-charge for the group of the students under training.
- Training in-charge has to evaluate each student every week and signed weekly diary with appropriate remarks.
- Industry may allot project to individual or group of students under training and students has to prepare report on the same project.
- > Training in-charge has to guide students for preparing their project report.
- Industry has to maintain attendance for the student under training and report for any irregularity of the students to their parent institute.

C. GUIDE LINE FOR STUDENTS

- Students have to fill the contract forms duly sealed and signed by authorities along with training order letter and submit it to training officer in the industry on the first day of training.
- He/she will have to get all the necessary information from the training officer regarding schedule of the training, rules and regulations of the industry.
- During the training period students will keep record of all the useful information and maintain the weekly diary.
- He/she will prepare a detailed training report about the whole process and will submit it to the department at the time of examination.

8. SUGGESTED LEARNING RESOURCES

- Students may visit websites as their learning tool during industrial visit.
- Source of learning websites are already given during previous semesters.
- Search videos, animations for preparation of training report during the training period.

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. J. R. Desai, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, Govt. polytechnic, Chhotaudepur

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL MANAGEMENT (COURSE CODE: 3361903)

Diploma offered	Programme	in	which	this	course	is	Semester in which offered
	Mechanic	al E	ngineeri	ng			Sixth

1. RATIONALE.

Technicians of mechanical engineering disciplines are expected to work during most of their career at middle level. They are also expected to deal with workforce and management problems. In the present era of competition, optimum utilization of the resources with achieving higher productivity is essential for any industry to survive. Quality and cost controls are also other important factors which contribute to the day to day supervision issues. This course aims to deal effectively with such issues along with familiarization of acts and laws applied to industries.

2. COMPETENCY.

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competencies.

- Recognize organization structure, human resource issues in industries and major provisions of factory acts.
- Plan, use, monitor and control resources optimally and economically.

3. COURSE OUTCOMES (COs).

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Interpret given organization structure, culture, climate and major provisions of factory acts and laws.
- ii. Explain material requirement planning and store keeping procedure.
- iii. Plot and analyze inventory control models and techniques.
- iv. Prepare and analyze CPM and PERT for given activities.
- v. List and explain PPC functions.

4. TEACHING AND EXAMINATION SCHEME.

Tooshing Sahoma			Total	Total Examination Scheme					
(In Hours)		Credits (L+T+P)	Theory	y Marks	Prac Ma	Total Marks			
L	Т	Р	C	ESE	РА	ESE	РА	100	
3	0	0	3	70	30	0	0	100	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, ESE -End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS.

	Major Learning	Topics and Sub-topics		
TT *4	Outcomes			
Unit	(in cognitive			
	domain)			
	1a. Describe the	1.1	System- concept, definition, types,	
Unit – I.	types of		parameters, variables and behavior.	
	organization	1.2	Management – definition and functions.	
Introduction.	structure	13	Organization structure:	
inti ouuctioni	1b Identify factors	1.5	i Definition	
	affecting moral		ii Goals	
•	1c Explain		iii Factors considered in	
	important		formulating structure	
	provisions of		in Tupos	
	factory act and		v. Adventages and disadventages	
	labour laws		v. Auvalitages and disadvalitages.	
	laboul laws.	1 /	VI. Applications.	
		1.4	division of labor scalar & functional	
			processes span of control delegation of	
			authority centralization and	
			decentralization in industrial	
			management	
		15	Organizational culture and climate –	
		1.5	meaning differences and factors	
			affecting them	
		16	Moral-factors affecting moral	
		1.0	Relationship between moral and	
		1.,	productivity.	
		1.8	Job satisfaction- factors influencing job	
		110	satisfaction.	
		1.9	Important provisions of factory act and	
			labor laws.	
	2a. Draw CPM and	2.1	CPM & PERT-meaning, features,	
Unit – II	PERT diagrams		difference, applications.	
	based on given	2.2	Understand different terms used in	
Critical Path	conditions and		network diagram.	
Method (CPM)	data.	2.3	Draw network diagram for a real life	
and	2b. Determine		project containing 10-15 activities,	
Programme	critical path on		computation of LPO and EPO.(Take	
Evaluation	CPM and PERT.		minimum three examples).	
Review	2c. Calculate floats	2.4	Determination of critical path on	
Technique	on CPM and		network.	
(PERT).	PERT.	2.5	Floats, its types and determination of	
			floats.	
		2.6	Crashing of network, updating and its	
			applications.	

Unit	Major Learning Outcomes (in cognitive	Topics and Sub-topics		
	domain)			
Unit – III Materials Management.	domain)3a. Applythe procedureprocedurefor purchase.3b. Practice the store keeping procedures.3c. Interpretgiven inventory model.3d. Derive Economic Order Quantity for given data.3e. Identify applicationsof Material Requirement Planning (MRP).	 3.1 Material management-definition, functions, importance, relationship with other departments. 3.2 Purchase - objectives, purchasing systems, purchase procedure, terms and forms used in purchase department. 3.3 Storekeeping- functions, classification of stores as centralized and decentralized with their advantages, disadvantages and application in actual practice. 3.4 Functions of store, types of records maintained by store, various types and applications of storage equipment, need and general methods for codification of stores. 3.5 Inventory control: Definition. Definition. Derivation for expression for Economic Order Quantity (EOQ) and numeric examples. ABC analysis and other modern 		
		 IV. ABC analysis and other modern methods of analysis. v. Various types of inventory models such as Wilson's inventory model, replenishment model and two bin model. (Only sketch and understanding, no derivation.). 3.6 Material Requirement Planning (MRP)-concept, applications and brief details about software packages available in market. 		
	4a. Schedule the	4.1 Types and examples of production.		
Unit – IV	operations based	4.2 PPC :		
Production planning and Control (PPC).	on available data using PPC techniques. 4b. Schedule using critical ratio scheduling	 i. Need and importance. ii. Functions. iii. Forms used and their importance. iv. General approach for each type of production. 4.3 Scheduling- meaning and need for 		
	technique 4c. Identify the factors and resources	 productivity and utilisation. 4.4 Gantt chart- Format and method to prepare. 4.5 Critical ratio scheduling-method and numeric examples. 		

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics		
Unit – V Value Analysis (VA) and Cost	affecting the bottlenecking. 4d. Schedule using Gantt chart with the help of Annexure-I for given data. 5a. Apply value analysis and cost control techniques for given case.	 4.6 Scheduling using Gantt Chart (for at least 5-7 components having 5-6 machining operations, with processes, setting and operation time for each component and process, resources available, quantity and other necessary data), At least two examples. 4.7 Bottlenecking- meaning, effect and ways to reduce. 5.1 VA-definition, terms used, process and importance. 5.2 VA flow diagram. 5.3 DARSIRI method of VA. 5.4 Case study of VA-at least two. 		
Control.		5.5 Waste-types, sources and ways to reduce them.5.6 Cost control-methods and important guide lines.		
Unit – VI Recent Trends in IM.	6a. Describe recent practices being adopted in industrial management.	 6.1 ERP (Enterprise resource planning) - concept, features and applications. 6.2 Important features of MS Project. 6.3 Logistics- concept, need and benefits. 6.4 Just in Time (JIT)-concept and benefits. 6.5 Supply chain management-concept and benefits. 		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY).

Unit	Unit Title	Toophing	Distribution of Theory Marks			
No.		Hours	R Level	U Level	A Level	Total Marks
Ι	Introduction.	6	6	4	0	10
II	Critical Path Method (CPM) and Programme Evaluation Review Technique (PERT).	10	4	6	7	17
III	Materials Management.	8	6	4	4	14
IV	Production Planning and Control (PPC).	10	6	4	7	17
V	Value Analysis (VA) and Cost Control.	4	4	2	0	6
VI	Recent Trends in IM.	4	6	0	0	6
	Total	42	32	20	18	70

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy).

Notes:

- a. This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.
- b. If mid-sem test is part of continuous evaluation, unit numbers I, II (Up to 2.4 only) and IV (Up to 4.7 only) are to be considered.
- c. Ask the questions from each topic as per marks weight age. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF PRACTICAL/EXERCISE

.....Not Required.....

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

Sr. No.	Activity
i.	Given the data, prepare the network diagram and determine critical path, EPO, LPO
	and floats.
ii.	Given the data, prepare the scheduling using Gantt chart.
iii.	Perform value analysis for given case.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any).

Sr. No.	Unit	Unit Name	Strategies
i.	Ι	Introduction.	Video movies.
ii.	Π	Critical path method (CPM) and pre evaluation review technique (PERT).	Video movies, solving tutorials, real life industries situation, industrial visits.
iii.	III	Materials management.	Video movies, real life industries situation, industrial visits.
iv.	IV	Production planning and control (PPC).	Video movies, solving tutorials, real life industries situation, industrial visits.
v	V	Value analysis (VA) and cost control.	Analyzing real cases, video movies.
vi	VI	Recent trends in IM.	Industrial visits, movies.

10. SUGGESTED LEARNING RESOURCES.

A. List of Books:

S. No.	Title of Book	Author	Publication
i.	CPM & PERT principles and Applications.	L.S.Srinath.	
ii.	Modern Production Management.	Buffa.	
iii.	Materials Management.	N. Nair.	
iv.	Industrial Engineering & Management.	O. P. Khanna.	
v.	Value Analysis.	Mikes.	

B. List of Major Equipment/ Instrument with Broad Specifications:

Sr. No.	Resource with brief specification.
1	Necessary freeware-other softwares.

C. List of Software/Learning Websites.

- i. www.youtube.com/watch?v=SF53ZZsP4ik
- ii. www.youtube.com/watch?v=iPZlQ3Zx5zc
- iii. web.stanford.edu/class/cee320/CEE320B/CPM.pdf
- iv. www.criticaltools.com/pertchartexpertsoftware.htm
- v. en.wikipedia.org/wiki/Program_evaluation_and_review_technique
- vi. www.netmba.com/operations/project/pert/

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics.

• **Prof. A. M. Talsaniya**, Lecturer in Mechanical Engineering, Sir BPI, Bhavnagar.

Coordinator and Faculty Members from NITTTR Bhopal.

- **Dr. Vandna Somkuwar,** Associate Professor, Department of Mechanical Engineering,
- Dr. A.K. Sarathe, Associate Professor; Department of Mechanical Engineering.
ANNEXURE – I

A. GIVE DETAILS OF EACH PART IN FOLLOWING FORMAT.

PART NUMBER			PART NAME	
MATERIAL			BATCH QUANTITY	
OP.NO.	PROCESS	SETTING TIME / BATCH (MIN).	OP. TIME / PIECE (MIN).	MACHINE

B. RESOURCE DETAILS:

NAME OF MACHINE	NUMBER OF MACHINES	MACHINE AVAILABLE FOR NUMBER OF HOURS / DAY (TOTAL FOR ALL SHIFTS).	NUMBER OF WORKING DAYS / MONTH.	TOTAL HOURS AVALABLE PER MONTH

SUGGESTED QUESTION PAPER FORMAT

(This is for reference only and is in suggestive form. Paper setter may opt for other marks distribution pattern maintaining distribution of marks as per specification table)

O NO	SUB	OUESTION	MARKS			UNIT
Q.NO.	Q.NO.	QUESTION	R	U	A	
1		Answer ANY seven from following.				14
	i.		2			I
	ii.		2			Ι
	iii.		2			II
	iv.		2			II
	v.		2			III
	vi.		2			III
	vii.		2			IV
	viii.		2			IV
	ix.			2		V
	x.		2			VI
2	a.		4			Ι
		OR				
	a.		4			Ι
	b.			4		Ι
		OR				
	b.			4		Ι
	с.			3		II
		OR				
	с.			3		II
	d.			3		II
		OR				
	d.			3		II
3	a.		4			III
		OR				
	a.		4			III
	b.				4	III
		OR				
	b.				4	III
	с.		3			IV
		OR				
	с.		3			IV
	d		3			VI
		OR				
	d		3			VI
4	a.	Given the data, prepare network diagram and determine critical path. Number of events should not be more than 7.			7	II
		OR				
	a.	Given the data, prepare network diagram. Calculate EPO and LPO at each node. Number of events should not be more than 7.			7	II
	b.			4		III
	c.			3		IV
5	a.	Given the data, prepare the scheduling using Gantt chart. Number of the components should not be more than 4.			7	IV
	b.	• • • • • • • • • • • • • • • •	4			V
	c.		3			VI

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: DESIGN FOR BLOW AND THERMOFORMING MOULDS (COURSE CODE: 3362301)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	Sixth

1. RATIONALE

The changing demands of customers with respect to shape and dimensions of containers and disposable items led the plastic engineers for developing various kinds of moulds. A Plastic Diploma engineer has to monitor operations and maintenance of Blow and Thermoforming moulds. This competency requires the knowledge of constructional details of Blow and Thermoforming Moulds. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCIES

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency-

• Design and manufacture blow and thermoforming moulds based on requirements.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Select suitable mould materials.
- ii. Explain design considerations for blow moulds.
- iii. Use Mould cooling channels for various sections of mould and ancillary elements for blow mould.
- iv. Employ thermoforming mould materials for prototype and production tooling.
- v. Design thermoforming moulds for different shaped products.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Examination Scheme						
(In Hours)		Credits (L+T+P)	Theory	Marks	Practica	l Marks	Total Marks		
L	Т	Р	С	ESE	PA	ESE	PA	200	
3	0	4	7	70	30	40	60	200	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics		
Unit – I Blow Mould Materials	1a. Identify blow mould materials requirements1b. Classify mould materials	1.1 Introduction of Blow Mould1.2 Mould Material Selection Requirements :1.3 Types of Mould Materials		
Unit- II Blow Mould Design Considerations	 2a. Design injection blow mould. 2b. Design Extrusion blow moulds. 2c. Describe Flash removal methods 2d. Describe Mould cleaning methods . 	 2.1 Injection Blow Mould 2.1.1 Mould Construction, Injection Blow Mould Design, Core rods/Parison Stick Design 2.2 Extrusion Blow Mould 2.2.1 Design procedure of Extrusion Blow Mould. 2.2.2 Mould Cavity Design 2.2.3 Method for deciding clamping force 2.4 Design consideration for mould parting line 2.5 Mould finish and Mould Venting 2.6 Cavity surface considerations 2.7 Welding edges & flash pockets in pinch-off 2.8 Neck insert design considerations 2.9 Radii and corner edge designs 2.10 Moulded holes and handle design 2.11 Shrinkage considerations 2.2.12 Blow and swell ratio 2.2.13 Moulds for undercut products (moving section moulds) 2.2.14 Flash removal methods 2.2.15 Mould cleaning methods 		
Unit – III Blow Mould Cooling and Ancillary Elements	3a. Draw cooling channels for various sections of mould.3b. Describe ancillary elements for blow mould.	 3.1 Mould Cooling 3.1.1 Significance of mould cooling. 3.1.2 Cooling designs for neck, pinch-off and main body. 3.2 Ancillary Elements 3.2.1 Base plates 3.2.2 Alignment pins 3.2.3 Striker plates 3.2.4 Ejection Methods 		
Unit – IV Thermoforming Mould Materials	 4a. Describe thermoforming mould materials requirements 4b. Classify mould materials for prototype and production tooling 	 4.1 Thermoforming Mould Materials 4.1.1 Introduction of Thermoforming Moulds 4.1.2 Mould Material requirements 4.1.3 Types of mould materials for prototype and production tooling 		
Unit – V Thermoforming Mould Design	5.a. Describe various components of thermoforming moulds.	 Design criteria for thermoforming moulds. Design Considerations 5.1 Vent Holes/Vacuum Holes-Number of vents ,Size, Position and types 		

Unit Major Learning Outcomes		Topics and Sub-topics
Considerations	5.b. Design	5.2 Shrinkage and Draft Angle Considerations
	thermoforming	5.3 Plug Design (For Plug Assist Mould)- Plug
	mould.	material, Shape of plug, Plug design
5.c. Describe Mould		concepts
	cooling designs.	5.4 Sheet clamping mechanisms
	5.d. Describe mould	5.5 Draw ratios and its importance
	ejection techniques.	5.6 Chamfers and radii
	5.e. Describe application	5.7 Surface treatments
	of Mould Releasing	5.8 Surface texture
	Agents.	5.9 Mould cooling designs
	5.f. Describe Multi-	5.10 Use of moving elements - collapsing
	impression Moulds	cores, `Unscrewing devices, cammed
	methods.	sections and slides
		5.11 Ejection techniques
		5.12 Application of Mould Releasing Agents
		5.13Moulds for undercuts
		5.14 Multi-impression Moulds, factors to be
		considered for deciding correct impression
		layout, method of determining the number of
		impressions for a given forming platform size
		and product size, Design and draw
		thermoforming mould for multi-impressions.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

		Teaching	Distribution of Theory Marks				
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks	
Ι	Blow Mould Materials	4	2	4	0	6	
II	Blow Mould Design Considerations	16	6	6	14	26	
III	Blow Mould Cooling and Ancillary Elements	6	3	4	3	10	
IV	Thermoforming Mould Materials	4	2	4	0	6	
V Thermoforming Mould Design Considerations		12	4	4	14	22	
TOTAL		42	17	22	31	70	

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise (outcomes in psychomotor domain)	Approx Hours Required
1	II	Design and draw sectional elevation, plan and inverted plan of blow moulds. (For different shapes to be casted, number of sheets would depend upon complexity of shapes. Faculty should give enough number of sheets to students to justify the time allocated)	28
2	Π	Draw detail drawings of mould drawn in above.	14
3	V	Design and draw sectional elevation, plan and inverted plan of Thermoforming mould. (For different shapes to be casted, number of sheets would depend upon complexity of shapes. Faculty should give enough number of sheets to students to justify the time allocated)	14
		TOTAL	56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Collect different shaped blow moulded articles and analyze the type of mould suitable for that product.
- ii. Collect different shaped thermoformed articles and analyze the type of mould suitable for that product.
- iii. Collect information related to mould technology through internet.
- iv. Visit nearby mould making industry.
- v. Prepare journals based on practical performed in laboratory.

9. SPECIAL INSTRUCTIONAL STRETEGIES (If any)

- i. Arrange expert lectures.
- ii. Arrange visit to nearby mould making industry.
- iii. Show relevant video/animations.
- iv. Give as many mould drawing exercises as possible.

10. SUGGESTED LEARNING RESOURCES (A) List of Books:

	(,					
SR. NO.	TITLE OF BOOK	AUTHORS	PUBLICATION			
1	Blow Moulding Handbook	Rosato/Rosato	Van Nostrand Reinhold			
2	Plastic Blow Moulding Handbook	Norman Lee	Van Nostrand Reinhold			
3	Blow Moulding	Fisher	Butterworth & Co.			
4	Technology of Thermoforming	James L. Throne	Hanser Gardner Publications			
5	Fundamentals of Plastics Thermoforming	Peter Klein	Morgan & Claypool Publishers			

(B) List of Software/Learning Websites:

- i. http://www.custom-pak.com/product-design-development/blow-moulding-designguide/#d
- ii. https://techcenter.lanxess.com/scp/americas/en/docguard/Part_and_Mould_Design_G uide.pdf?docId=77015
- iii. http://www.plastiglas.com.mx/images/content/PLASTIGLAS_INST/uploads/1168103 546998Thermoforming.pdf
- iv. http://www.thermoform.com/tempsite/profileFlip/PP_designguide.pdf
- v. http://www.multifab-inc.com/guidelines.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- Prof. A. S. Amin, LPE, Government Polytechnic, Ahmedabad.
- Prof. J. R. Desai, LPE, Government Polytechnic, Valsad.
- Smt. S. R. Shah, LPE, Government Polytechnic, Valsad.
- **Prof. M. K. Thakarar**, LPE, Government Polytechnic, Valsad.
- **Prof. B. I. Oza**, LPE, Government Polytechnic, Ahmedabad.
- **Prof. N. C. Suvagya**, LPE, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr Shashi Kant Gupta, Professor and Coordinator for State of Gujarat
- Dr. Abhilash Thakur, Associate Professor, Department of Applied Sciences.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MOULD FABRICATION TECHNOLOGY - II (COURSE CODE: 3362302)

Diploma Programme in which this course is offered	Semester in which offered
Plastics Engineering	Sixth

1. RATIONALE

To be in line with global developments the fabricators require faster, precise and economical fabrication techniques to produce moulds and other accessories associated with Plastic industries. A Plastic dploma engineer must be aware with modern fabrication techniques to cope up with recent fabrication requirements. This competency requires the knowledge of advanced fabrication techniques to produce intricate parts which are difficult to produce through conventional techniques. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Fabricate different parts of mould using appropriate fabrication method/machine

3. COURSE OBJECTIVES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify needs of fabrication techniques.
- ii. Compare fabrication techniques with respect to part production.
- iii. Select suitable process for given shape, size and material of mould part.
- iv. Fabricate mould part based on selected method/machine

4. TEACHING AND EXAMINATION SCHEME

Тея	ching Sch	eme	Total	Cotal Examination Scheme				
100	(In Hours	()	Credits (L+T+P)	Theory	Marks	Practica	l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200
3	0	4	7	70	30	40	60	200

GTU/NITTTR/Bhopal/14

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

	Major Learning				
T T . •4	Outcomes (in cognitive	Topics and Sub-topics			
Unit	domain)				
	domanij				
	1a. Identify	1.0 Introduction			
	Conventional	1.1 Introduction To Conventional Fabrication			
	Fabrication	Techniques			
IInit _ I	Techniques.	1.2 Advancements In Fabrication Techniques			
Introduction	1b. Compare	1.3 Advantages Of Advance Fabrication			
muouucuon	Conventional And	Techniques			
	Advanced				
	Fabrication				
	Techniques.				
	2a. Identify Needs For	2.1 Spark Erosion Process			
	EDM.	2.1.1 Working Principle			
Unit- II	2b. Select Proper EDM	2.1.2 Construction & Working			
Flectronic	Process.	2.1.3 Dielectric Medium			
Discharge		2.1.4 Different Tool Materials			
Method		2.1.5 Advantages And Disadvantages			
(EDM)		2.2 Wire-Cut EDM 2.2.1 Working Principle			
		2.2.1 Working Principle			
		2.2.2 Construction & Working			
		2.2.3 Advantages And Disadvantages			
	3a. Identify Needs Of	3.1 Copying Lathe			
	Copying Lathe.	3.1.1 Types Of Attachments-Electronics,			
Unit – III	3b. Identify Needs Of	Hydraulic And Mechanical			
Copying Lathe	Copying Milling.	3.1.2 Construction & Working			
and Copying		3.1.3 Advantages And Disadvantages 3.2 Copying Milling			
Milling		3.2 Copying Milling			
		3.2.1 Types Of Attachments-Electronics,			
		Hydraulic And Mechanical			
		3.2.2 Construction & Working			
		3.2.3 Advantages And Disadvantages			
T T 1 / T T 7	4a. Identify Needs Of	4.1 Pantograph Die Sinking Machine			
Unit – IV	Pantograph Machine.	4.1.1 Basic Working Principle			
Pantograph Die		4.1.2 Construction & Working			
Sinking Machine		4.1.3 Advantages And Disadvantages			
	50 Idontify Manda Of	5.1 Jig Doning Mochine			
Unit – V	Ja. Identify Needs Of	5.1 Jug Doring Machine			
Jig Boring	Jig Doring Machine.	5.1.2 Construction & Working			
Machines		5.1.2 Construction & Working			
		S.1.5 Comparison with vertical Milling			
		Machine			

5. COURSE CONTENT DETAILS

	Major Learning	
Unit	Outcomes (in cognitive	Topics and Sub-topics
Cint	domain)	
	6. Identify Needs Of	(1 Cold Hobbing Process
TI:4 VT	Cold Lichhing	6.1 Cold Hodding Process
Unit – VI Cald Habbins		6.1.1 Characteristics Of Mould Materials
Cold Hobbing	Process.	6.1.2 Types Of Hob Materials
Process	bb. Classify Hob	6.1.3 Process
	Materials.	6.1.4 Advantages And Disadvantages
Unit – VII	/a. Identify Needs Of	7.1 Electroforming Process
Electroforming	Electroforming	7.1.1 Basic Working Principle
Process	Process.	7.1.2 Process
		7.1.3 Advantages And Disadvantages
	8a. Identify Needs Of	8.1 Polishing Methods
Unit _ VIII	Polishing.	8.1.1 Need And Significance Of Polishing
Polishing	8b. Classify Polishing	8.1.2 Types Of Polishing Materials
Mothods	Materials.	8.1.3 Types Of Polishing Methods
Wiethous	8c. Select Proper	
	Polishing Method.	
	9a. Compare CNC With	9.1 Fundamentals Of CNC Machines
Unit – IX	Conventional	9.1.1 CAM – Concept And Definition.
Fundamentals of	Machines.	9.1.2 Components Of CNC Machines
CNC machines		9.1.3 Advantages Over Conventional
		Machines
	10a. Classify Various	10.1 Rapid Prototyping Processes
	Processes.	10.1.1 Need And Significance
Unit – X	10b. Select Proper	10.1.2 Types Of Processes And Applications
Rapid	Prototyping	i. Stereo Lithography
Prototyping	Process.	ii. Selective Laser Sintering
Processes		iii. Fused Deposition Method
		iv. Laminated Object Manufacturing
		v. 3 D Printing

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

.	Unit Title Teaching		Distribution of Theory Marks			
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks
Ι	Introduction	3	3	0	0	3
II	Electronic Discharge Method (EDM)	7	3	3	4	10
III	Copying Lathe and Copying Milling	4	3	2	2	7
IV	Pantograph Die Sinking Machine	3	3	2	2	7

		Teaching	Distribution of Theory Marks				
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks	
V	Jig Boring Machines	3	2	2	2	6	
VI	Cold Hobbing Process	3	2	2	2	6	
VII	Electroforming Process	4	3	2	2	7	
VIII	Polishing Methods	5	2	3	3	8	
IX	Fundamentals of CNC Machines	5	3	3	3	9	
X Rapid Prototyping Processes		5	3	4	0	7	
	TOTAL	42	27	23	20	70	

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise	Approx Hours Required
1	II, III VIII	Manufacture any two mould parts. (parts having different shapes, number of parts to be fabricated may be more than two, it would depend upon complexity of shapes. Faculty should give enough number of shapes for fabrication to students to justify the time	40

		allocated)	
2	II	Fabricate parts with EDM process. (with help of industries)	16
		TOTAL	56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Collect information and prepare chart for advanced fabrication techniques.
- ii. Collect information about CNC and rapid prototyping machines through internet.
- iii. Visit nearby mould making industry.

9. SPECIAL INSTRUCTIONAL STRETEGIES (If any)

- i. Arrange expert lecture (may be faculty from Mechanical Engineering Department of same polytechnic)
- ii. Arrange visit to nearby machining/fabrication industry having state of art machines.
- iii. Show video/animation of different machining/fabrication operation

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

Sr. No.	Title Of Book	Authors	Publication
1	Elements of Workshop Technology	Hazra Choudhary	Media Promoters and Publishers Pvt. Ltd.
2	Workshop Technology	W. Chapman	Elseveir
3	Injection Mould Design	R.G.W Pye	Van Nostrand Reinhold
3	CNC Fundamentals and programming	P. M. Agrawal	Charotar Publishing
4	Rapid Prototyping	Andreas Gebhardt	Hanser Publications
5	A Textbook of Manufacturing Technology: Manufacturing Processes	R. K. Rajput	Laxmi Publications

- i. http://nptel.ac.in/courses/112105127/pdf/LM-23.pdf
- ii. http://web.iitd.ac.in/~pmpandey/MEL120_html/RP_document.pdf
- iii. http://www.reliableedm.com/Complete%20EDM%20Handbook/Complete%20EDM%20Handbook_1.pdf
- iv. http://www.automationmag.com/images/stories/LWTechfiles/91%20Electrical%20Discharge.pdf
- v. http://www3.nd.edu/~rroeder/ame50542/slides/rapidprototyping.pdf
- vi. www.wikieducator.org/Workshop_Technology_(Mechanical)
- vii. http://www.ignou.ac.in/upload/Unit-3.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- **Prof. A.S.Amin,** LPE, Government Polytechnic, Ahmedabad.
- **Prof. J.R.Desai**, LPE, Government Polytechnic, Valsad.
- Smt. S.R.Shah, LPE, Government Polytechnic, Valsad.
- **Prof. M.K.Thakarar**, LPE, Government Polytechnic, Valsad.
- **Prof. B.I.Oza, LPE,** Government Polytechnic, Ahmedabad.
- **Prof. N.C.Suvagya, LPE,** Government Polytechnic, Chhota Udepur.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Shashi Kant Gupta, Professor and Coordinator for State of Gujarat
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PLASTIC MATERIALS - II (COURSE CODE: 3362303)

Diploma Programmes in which this course is offered	Semester in which offered
Plastics Engineering	Sixth

1. RATIONALE

To satisfy the need of end user, many advanced polymers have been developed. Diploma Plastic engineer has to deals with the production as a responsible technician and first line supervisor in the industries. Thus he should be acquainted with various high performance, specialty plastics, alloys & blends used in high performance applications. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. **COMPETENCIES**

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Select appropriate advanced materials correlating the properties of the material and high performance required in end product.

3. Course Outcomes (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Describe the need of high quality plastics.
- ii. Categorize the polymers used in specialty applications.
- iii. Explain the importance of polymer alloys and blends.
- iv. Categorize and compare various biopolymers.

4. Teaching and Examination Scheme

Tea	ching Scl	heme	Total	Examination Scheme						
(In Hour	s)	Credits (L+T+P)	Theory Marks		Theory Marks		Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA			
3	0	2	5	70	30	20	30	150		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics		
Unit – I High Performance Plastics	1a. Compare properties of various high quality plastics.1.b List out the applications of high quality plastics	1.1 Polyimides1.2 Polyetherimide1.3 Poly(amide-imide)1.4 Polyarylates1.5 Chlorinated Polyether		
Unit – II Speciality Polymers	2b. List out the areas of applications in specific areas 2c. Identify various polymers used in speciality applications and their properties	 2.1 List of Polymers, Properties & Applications of : High Temperature Polymers Fire resisting polymers Biomedical Polymers Barrier Polymers Electrically Conductive Polymers Thermoplastic Elastomers Liquid Crystal Polymers 2.2 Introduction to Polymer Nanocomposites 		
Unit – III Polymer Alloys & Blends	 3a. Define various terms for Alloy and Blends 3b. Characterize Alloy and Blends 3c. Select the Blend components. 3d. Differentiate various Blend Preparation techniques 	 3.1 Introduction & definitions of terms related to Alloys & Blends. 3.2 Importance of Polymer alloys & blends 3.3 Selection of blend components. 3.4 Steps in polymer blend design. 3.4 Blend Preparation techniques Melt blending Solution blending Latex or dispersion mixing 3.5 Properties and applications of alloys and blends, PP/EPDM, PC/ABS, PC/PBT (Xenoy), PPO/Nylon, PPO/PS (Noryl), ABS/PVC 		
Unit – IV Biodegradable Polymers	 4a. Define Biodegradable polymers 4b. Classify biopolymers 4c. Compare properties of different biopolymers 4d. List out factors affecting biodegradability 	 4.1 Introduction & definition of related terms. 4.2 Classification of biodegradable polymers 4.3 Properties and applications of biodegradable polymers: Natural polymers (starch, cellulose) Microbial polyesters (PHA,PHB) Polylactic acid (PLA) Polycaprolactone (PCL) Water soluble polymers 4.4 Factors affecting biodegradability 		
Unit –V Polymers in Sectorial Applications	 5a. Introduction 5b. Know various areas of applications 5c. Identify various polymers used in those areas as per requirement 	 5.1 Polymers in Packaging 5.2 Polymers in Building and Construction 5.3 Polymers in Automotive Applications 5.4 Polymers in Aerospace Applications 5.5 Polymers in Agriculture 		

Unit	Major Learning Outcomes	Topics and Sub-topics
		5.6 Polymers in Medical Applications5.7 Polymers in Sports

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	High Performance Plastics	04	03	04	00	07
II	Speciality Polymers	10	03	10	04	17
III	Polymer Alloys & Blends	10	03	10	05	18
IV	Biodegradable Polymers	09	03	07	04	14
V	Polymers in Sectorial Applications	09	03	03	08	14
		42	15	34	21	70

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Approx. Hours Required
1	Ι	Study and identify structure, properties and applications of PAI.	02
2	Ι	Study and identify structure, properties and applications of PI.	02
3	Ι	Study and identify structure, properties and applications of PEI.	02
4	II	Study and identify properties and applications of various speciality polymers.	02
4	III	Design a polymer blend.	02
6	III	Demonstrate blend preparation techniques.	
7	III	Identify and compare properties and applications of PC/ABS & PC/PBT blends	02
8	III	Identify and compare properties and applications of	02

		PPO/PS and PPO/Nylon blends	
9	IV	Study and explain the factors affecting biodegradability	02
10	IV	Study and identify various natural polymers and their properties	02
11	V	Explore and identify the uses of various polymers used in agricultural applications	02
12	V	Explore and identify the uses of various polymers used in medical applications	02
13	V	Explore and identify the uses of various polymers used in sports applications	02
14	V	Explore and identify the uses of various polymers used in automotive applications	02
Total			28

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Fetch new polymers used in specialty applications.
- ii. Identify new areas of applications of polymers.
- iii. Prepare list of properties and applications of high quality polymers.
- iv. Prepare list of properties and applications of polymer alloys and blends.
- v. Explore the importance of biodegradable polymers and latest trends in it with the help of internet.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

i. Arrange expert lecture (may be faculty from chemistry department of same polytechnic)

ii. Give different type of polymers as topic to group of students (3 to 4) and ask them to prepare ppt by exploring internet and ask them to present in the class seminar.

iii. Ask students to explore the market and prepare the report (with samples of polymers) about their specification, utility, cost etc.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Hand Book Biodegradable Polymers	Catia Bastioli	Rapra Technology Limited
2.	Green Plastics	Stevens	Princeton University Press
3.	Biodegradable polymers for industrial applications	Ray Smith	Woodhead Publishing Limited
4.	Plastics Materials	Brydson	Butterworth-Heinemann
5.	Polymer Alloys & Blends	R.P.Singh	Asian Books
6.	Engineering Thermoplastics	James Margolis	CRC Press
7.	Plastics Technology Handbook	Manas Chanda & Roy	CRC Press
8.	Principles of Polymer Science	Bahadur & Sastry	Alpha Science International

9.	Polymers Blends & Alloys	L.A.Uttracki	Hanser Publications
10.	Engineering Polymers	Dyson	Chapman & Hall

(B) List of Software/Learning Websites

- i.www.en.wikipedia.org
- ii. http://cdn.intechopen.com/pdfs-wm/34065.pdf
- iii. http://ed.iitm.ac.in/~shankar_sj/Courses/ED5312/Materials_for_Automobiles17.pdf
- iv. www.europeanplasticfilms.eu/docs/AustralianReportonBiodegradablePlastics.pdf
- v. http://www.sdplastics.com/ensinger/aerodef.pdf
- vi. www.icmpp.ro/sustainableplastics/files/Biodegradable_plastics_and_polymers.pdf
- vii. web.stanford.edu/cheme160/lectures

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. Ajay Amin, Lecturer, Government Polytechnic, Ahmedabad.
- Prof. J. R. Desai, Lecturer, Government Polytechnic, Valsad.
- Prof. (Mrs) S.R.Shah, Lecturer, Government Polytechnic, Valsad.
- Prof. M. K. Thakarar, Lecturer, Government Polytechnic, Valsad.
- Prof. B. I. Oza, Lecturer, Government Polytechnic, Ahmedabad.
- Prof. N.C. Suvagya Lecturer, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR Bhopal

•Dr. Shashi Kant Gupta, Professor and Coordinator for State of Gujarat

•Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PLASTICS TESTING AND QUALITY MANAGEMENT (COURSE CODE: 3362304)

Diploma Programmes in which this course is offered	Semester in which offered
Plastics Engineering	Sixth

1. RATIONALE

Plastics being widely used in diversified applications, it is necessary to test the material properties before deciding to use them for each application. By testing of plastics, the product design and the area of application can be explored. Diploma Plastic engineer has to deals with the production of various types of plastics as a responsible technician and first line supervisor in the industries. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes. This course also aims to create awareness about quality control and quality management methods.

2. **COMPETENCIES**

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Test plastics and analysis various properties.

• Maintain quality of production using SQC and SPC techniques.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- Identify factors affecting the tests.
- Perform various tests.
- Interpret the test results.
- Select appropriate material
- Explain SQC Procedures
- Explain SPC Procedures

4. Teaching and Examination Scheme

Tea	ching Sc	heme	Total	Examination Scheme						
(In Hours)		s)	Credits (L+T+P)	Theory Marks		Theory Marks		Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	РА			
3	0	2	5	70	30	20	30	150		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Introduction	 1a. Define testing 1b. List out the standards 1c. List out the purpose of specifications 1d. List out the organizations for standards and quality 1e. Explain conditioning procedure 	 1.1 Definition 1.2 Reasons for testing 1.3 Purpose of standard & specification 1.4 various organization dealing with standards and quality 1.5 Conditioning of samples
Unit – II Mechanical Properties	2a. Operate various Testing equipments.2b. Determine/calculate strength of plastic materials.2c. Compare materials	 2.1 Tensile strength test 2.2 Stress-Strain curve 2.5 Creep & stress relaxation 2.4 Flexural strength test 2.4 Impact strength test 2.4.1 Izod impact 2.4.2 Dart impact test 2.6 Hardness & Abrasion resistance
Unit –III Thermal Properties	3a. Perform the standard test procedures3b. Interpret test results.3c. Classify the material.	 3.2 Determination of Heat Deflection Temperature (HDT) 3.3 Determination of Vicat Softening Temperature (VST) 3.3 Thermal expansion test
Unit – IV Electrical and Optical Properties	4a. Measure electric properties4b. Classify materials based on electrical properties4c. Apply optical properties in selection of material	 4.1 Die electric strength 4.2 Die electric constant 4.3 Arc resistance 4.4 Definition of volume resistance and surface resistance 4.5 Refractive index 4.6 Definition of light transmission, haze, gloss, clarity
Unit – V Miscellaneou s Tests	 5a. Understand flow behavior of plastics 5b. Identify flow behavior of thermosets. 5c. Perform ESCR test. 5d. Identify the flame resistance. 5e. Measure the density of material. 5f. Measure the weather resistance of the material. 5g. Differentiate between conventional and non destructive testing 	 5.1 Melt flow index 5.2 Cup flow test and Spiral flow test 5.3 Environmental Stress Cracking Resistance 5.4 Oxygen index test 5.5 Specific gravity test 5.6 Outdoor and accelerated weather resistance tests. 5.7 Non destructive test -Ultrasonic testing

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit - VI Failure Analysis and Quality Control	 6a. Classify failures 6b. Analyze failures 6c. Explain meaning and purpose of quality control 6d. Explain SPC and SQC procedures. 	 6.1 Types of failures 6.2 Failure Analysis techniques 6.1 Importance of quality control 6.2 Statistical Quality Control(SQC) 6.3 Quality assurance manual 6.4 Statistical Process Control (SPC)
Analysis and Quality Control	 6c. Explain meaning and purpose of quality control 6d. Explain SPC and SQC procedures. 	 6.1 Importance of quality control 6.2 Statistical Quality Control(SQC) 6.3 Quality assurance manual 6.4 Statistical Process Control (SPC)

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teachin	Distribution of Theory Marks				
No.		g Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Introduction	03	03	03	00	06	
II	Mechanical Properties	10	04	03	09	16	
III	Thermal Properties	03	02	02	02	06	
IV	Electrical and Optical Properties	08	03	03	06	12	
V	Miscellaneous Tests	08	03	03	08	14	
VI	Failure Analysis and Quality Control	10	04	08	04	16	
	Total	42	19	22	29	70	

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Approx Hours. Required
1	II	Measure the tensile strength of a given plastic.	02
2	II	Measure the flexural strength of a given plastic.	02
3	II	Measure the impact strength of a given plastic.	02
4	II	Measure the hardness of a given plastic.	02
5	III	Measure the HDT of a given plastic.	02

6	III	Measure the VST of a given plastic.	02
7	IV	Measure the Dielectric strength of a given plastic.	02
8	V	Measure the ESCR of a given plastic.	02
9	V	Measure the Melt Flow Index of a given plastic.	02
10	V	Measure the Oxygen Index of a given plastic	02
11	V	Measure the Specific Gravity.	02
12	VI	Interpret process control charts. (for two different cases)	04
12	VI	Interpret given test data and take decisions based on SQC	02
15	V I	techniques	
Total			28

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Study the test results of various tests on different samples and find out the reasons for variation in results (beyond expectation variation if any) and try to find out the reasons for these variations.
- ii. Study the SQC and SPC procedures being adopted by different plastic product manufacturers and prepare a report.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange expert lecture on SQC and SPC by Quality Manager/Engineer of a plastic industry.
- ii. Arrange a visit to nearby plastic industry and show students different testing procedure being carried out there.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1	Hand Book of Plastics	Vishu Shah	Wiley Inter-science
1.	Testing Technology		publication
2	Hand Book of Polymer	R.P.Brown (roger	Marcel- Dekker Inc.
۷.	testing	brown)	
3.	Statistical Quality Control	O.P.Khanna	Khanna publishers
4	Hand book of plastics &	C.A.Harper	Wiley publication
4.	elastomers		
5	Plastics processing data hand	D.V.Rosato	Springer Berlin Heidelberg
5.	book		

B) List of Major Equipment/ Instrument with Broad Specifications

- 1. Universal Testing Machine
- 2. Rockwell Hardness Tester
- 3. Abrasion tester
- 4. Dielectric strength and constant tester
- 5.HDT cum VST tester
- 6.MFI tester
- 7. Viscometer
- 8.Refractometer
- 9. Oxygen Index tester

C) List of Software/Learning Websites

- i. http://www.ipolytech.com/
- ii. http://www.ulttc.com/
- iii. www.intertek.com
- iv. http://www.labtesting.com/
- v. www.nslanalytical.com/testing/polymer
- vi. http://www.exova.com/capabilities/polymer-testing/
- vii. http://www.chemir.com/plastic-polymer-testing.html

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- **Prof. A. S. Amin,** LPE, Government Polytechnic, Ahmedabad.
- **Prof. J .R. Desai**, LPE, Government Polytechnic, Valsad.
- Smt. S. R. Shah, LPE, Government Polytechnic, Valsad.
- **Prof. M .K. Thakarar,** LPE, Government Polytechnic, Valsad.
- Prof. B. I. Oza , LPE, Government Polytechnic, Ahmedabad.
- **Prof. N. C. Suvagya,** LPE, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Shashi Kant Gupta, Professor and Coordinator for State of Gujarat
- **Dr. Joshua Earnest,** Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: SECONDARY PROCESSING TECHNIQUES (COURSE CODE: 3362305)

Diploma Programme in which this course is offered	Semester in which offered
Plastics Engineering	Sixth

1. RATIONALE

The changing demands of end users with respect to products led the plastic engineers for developing various kinds of processes. A plastic diploma engineer has to monitor operations of many specialized processes. This competency requires the knowledge of these specialized processes. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Develop plastic products using appropriate specialized (secondary processes) techniques.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify needs of specialized fabrication techniques.
- ii. Compare specialized fabrication techniques
- iii. Identify manufacturing requirements of various processes.
- iv. Analyse and compare various processes.
- v. Select suitable process for production of articles.
- vi. Carry out different secondary processes on plastic products

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total		Exan	Examination Scheme			
10	(In Hours	s)	Credits (L+T+P)	Theory	Marks	Practica	l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE CONTENT DETAILS

	Major Learning		
	Outcomes (in		Tanias and Sub tanias
Unit	Outcomes (in		Topics and Sub-topics
	cognitive domain)		
TT 4 T	1. Ilentifica And	1 1	Tutus destisu
Unit - 1	Ta. Identify And	1.1	Introduction
Calendering	Select Raw	1.2	Raw Material Selection And Types Of Additives
Process	Material	1.3	Material And Material Preparation
	Composition	1.4	(Premix, Blending, Gelation)
	Ib. Select Suitable	1.4	Roll Construction
	Calendar	1.5	Types Of Rolls – Cored And Drilled Rolls
	Arrangement.	1.6	Types Of Calenders
	Ic. Compare Similar		a. Superimposed Calenders
	Processes.		b. Offset Calenders
			c. Z Calenders
		1.7	Heating And Lubrication
			Systems For Calendar Rolls
		1.8	Calendaring Process With Plant Layout
		1.9	Start-Up And Shut-Down Procedure
		1.10	Trouble Shooting
		1.11	Post Calendaring Processes
		1.12	Compare With Sheet Extrusion.
		1.13	Application
		1.14	Advantages And Disadvantages
Unit – II	2a. Select	2.1 C	asting
Casting And	Appropriate	2.1.1	Introduction
Encapsulati	Material For	2.1.2	Casting Material And Additives
on	Casting And	2.1.3	Casting Mold Materials
	Encapsulation	2.1.4	Casting Process
	2b. Compare Similar	2.1.5	Casting Applications
	Processes	2.1.6	Advantages And Disadvantages
		2.2 Ei	ncapsulation
		2.2.1	Materials For Encapsulations
		2.2.2	Encapsulation Process
		2.2.3	Applications

GTU/NITTTR/Bhopal/14

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
	cogina ve domani)	
Unit – III Fiber Reinforced Plastics	3a. Select Suitable Fiber And Material. 3b. Analyze Suitable Processes 3c. Select Proper Process 3d. Compare With Other Processes.	 3.1 Introduction 3.2 Material Selection Criteria 3.3 Introduction Of Various Resins Use In Composite 3.4 Fibers - Classification, Properties And Applications 3.5 Release Agents - Internal And External 3.6 Gel Coat Preparation And Its Application 3.7 Molding Compounds a. DMC/BMC b. SMC c. TMC d. Prepags 3.8 Mould Materials 3.9 FRP Processes a. Hand Lay Up b. Spray Lay Up c. Vacuum & Pressure Bag d. Filament Winding e. Pultrusion f. Match Die Molding g. Resin Transfer Molding h. Foam Reservoir Molding i. Centrifugal Molding
		j. Vacuum Impregnation And Injection
		3.11 Applications
		3.12 Advantages And Disadvantages
Unit – IV	4a. Distinguish	4.1 Introduction
Vinyl	Vinyl Dispersion	4.2 Resin Selection Criteria
Dispersion	Processes.	4.3 Plastisol Preparation
	40. Select Molding	4.4 Vinyi Dispersion Process
	1100055.	b. Knife Coating
		c. Roll Coating
		d. Fabric Coating
		e. Film Casting
		4.5 Molding Process
		a. Dip Coating And Dip Molding
		D. HOT AND COLD MOLDING
		d Rotational Molding
		e. Strand Coating
		4.6 Applications

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
Units-V	5a. Classify Blowing	5.1 Introduction
Foam	Agents.	5.2 General Production Methods
Processes	5b. Identify Suitable	5.3 Blowing Agents
	Blowing Agent.	a. Physical
	5c. Analyze Various	b. Chemical
	Foam Materials.	5.4 Cellular Structure And Properties
	5d. Select Proper	5.5 Flexible And Rigid Foam of
	Foam Material.	a. Polyurethane (PU)
		b. Poly Vinyl Chloride (PVC)
		c. Polystyrene (PS)
		d. Polyethylene (PE)
		e. Epoxy
		f. Silicone
		g. Urea Formaldehyde (UF)
		5.6 Applications
		5.7 Advantages And Disadvantages

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

		Tasahing	Distribution of Theory Marks				
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks	
Ι	Calendaring Process	09	5	5	5	15	
II	Casting and Encapsulation	06	4	4	3	11	
III	Fiber Reinforced plastic	12	6	6	6	18	
IV	Vinyl Dispersion	08	4	4	6	14	
V Foam Processes		07	4	4	4	12	
TOTAL		42	23	23	24	70	

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit Number	it Practical/Exercise ber	
1	Ι	Demonstrate calendering process.	4
2	Ι	Demonstrate composition, heating and lubrications of Calendering rolls.	4
3	Ι	Demonstrate types of calender arrangements.	4
4	II	Manufacture product utilizing casting process.	4
5	II	Demonstrate encapsulation process.	4
6	III	Demonstrate various moulding compounds for FRP.	8
7	III	Prepare FRP product using contact moulding.	4
8	III	Demonstrate filament winding process for making FRP products.	8
9	IV	Demonstrate various Vinyl Dispersion preparation processes.	4
10	IV	Demonstrate moulding processes for Vinyl Dispersion.	4
11	V	Demonstrate general production methods of Foam plastics.	4
12	V	Demonstrate production method of expandable PS Foam.	4
		TOTAL	56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Collect information about various FRP products and their manufacturing processes.
- ii. Collect information about industries related to these secondary processes by exploring internet.
- iii. Visit nearby processing industries.
- iv. Survey market and collect different plastic items and discuss in class the material and advanced processes used in making it.

9. SPECIAL INSTRUCTIONAL STRETAGIES (If Any)

- i. Arrange expert lectures by inviting engineers from related industries
- ii. Arrange visit to nearby plastic processes industry having state of art machines.
- iii. Show video/animation of different machining/fabrication operation
- iv. Give students (in group of 3 to 4) mini project on different special/secondary processes and ask them to collect information from internet/nearby industries and present in a class seminar.

10. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Authors	Publication
1	Plastic Materials and Processos	S. S. Schwartz &	Van Nostrand Reinhold
1	Flastic Materials and Flocesses	S. H. Goodman	Company
2	Plastic Engineering Handbook	L L Fredoz	Van Nostrand Reinhold
2	Trastic Engineering Handbook	J. L. HICUOZ	Company
3	SPI Plastic Engineering Handbook	M. Bearins	Springer
			American Elsevier
4	Calendering of Plastics	Elden & Swan	Publishing Company
5	EDD Taskaslosy	D.C. Weetherhead	Applied Science
5	FKP Technology	K. G. weathernead	Publisher

(A) List of Books:

(B) List of Major Equipment/Instruments

- (i) Models/Charts of various special/secondary processes.
- (ii) Sample of plastic items manufactured using advance/secondary processes

(C) List of Software/Learning Websites:

- i. en.wikipedia.org
- ii. http://www.appropedia.org/Polymer_Calendering
- iii. http://www.moldedfiberglass.com/sites/default/files/docs/MFG_Selecting_FRP_Composite_for_Projects.pdf

- iv. http://www.reichhold.com/corrosion/docs/Materials%20Selection%20Guide%20Final%2 0Version.pdf
- v. http://www.lindeus.com/internet.lg.lg.usa/en/images/1776E_Foaming_with_inert_gases_ brochure_hires138_74264.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- **Prof. A.S.Amin,** LPE, Government Polytechnic, Ahmedabad.
- **Prof. J.R.Desai**, LPE, Government Polytechnic, Valsad.
- **Prof (Smt.) S.R.Shah,** LPE, Government Polytechnic, Valsad.
- **Prof. M.K.Thakarar**, LPE, Government Polytechnic, Valsad.
- **Prof. B.I.Oza**, LPE, Government Polytechnic, Ahmedabad.
- **Prof. N.C.Suvagya**, LPE, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Shashi Kant Gupta, Professor and Coordinator for State of Gujarat
- **Dr. Joshua Earnest,** Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM ADVANCED PLASTIC PROCESSING TECHNIQUES

(Code: 3372301)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	7 th Semester

1. RATIONALE

The course deals with advancement in plastic processing techniques. Stretch blow molding and multi-layer blow molding are the latest technologies used for making bottles and containers for packaging. Students should be aware of recent developments in injection blow molding and extrusion blow molding as new products are coming in the market every day. With the advancement in extrusion technology many products came into existence for the mankind e.g. reinforced pipes, coextruded multilayer films & sheets, foam extruded products, nylon braided pipes etc. Also with the use of various post extrusion processes so many products like nets, corrugated sheets etc can be manufactured. Hence plastics engineer is expected to know the latest extrusion technology along with theory of technology and screw design for better quality products. The advanced injection molding technology enhances production rate as well as quality to fulfill the requirements of emerged new market. Precise computer controls and programs enable the process variables with zero defects at the lowest cost through fine tuning of machine settings.

2. COMPETENCIES

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Operate, set process parameters and control Blow molding machine, Extrusion plant and Injection molding machine for non conventional products.

3. COURSE OBJECTIVES:

At the end of the course students will be able to:

- 1. Explain stretch blow molding process
- 2. Understand non conventional blow molding process
- 3. Differentiate various screw designs used in extrusion plants
- 4. Explain specialized extrusion processes for non conventional extrusion product
- 5. Distinguish non conventional injection molding techniques

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Exam		nination Scheme			
100	(In Hours	s)	Credits (L+T+P)	Theory	y Marks	Practica	l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
UNIT 1: ADVANCED BLOW MOLDING PROCESSES	 1.a Understand the stretch blow molding process 1.b Differentiate various stages of process 1.c Troubleshoot the problems in co extrusion blow molding 1.d Explain various non conventional blow molding techniques and post operative operations 	 STRETCH BLOW MOLDING Introduction Single stage & two stage processes and its comparison Orientation and stretch ratio Pre-forming Extrusion stretch blow molding Injection orientation blow molding CO-EXTRUSION BLOW MOLDING Co-extrusion equipment Process MISCELLANEOUS BLOW MOLDING Neck ring process Neck ring process Blow molding of irregular shaped parts
UNIT 2: ADVANCED EXTRUSION TECHNIQUES	 2.a Distinguish between various screw designs 2.b List merits and demerits of co-extrusion process 2.c Explain various specialized process for non conventional extruded products 	 ADVANCED EXTRUDER MACHINE FEATURES Twin screw extruder

Unit	Major Learning Outcomes	Topics and Sub-topics		
		 2.5 Applications of co-extruded products. 3. SPECIALIZED PROCESSES 3.1 Reinforced pipes- Nylon braided pipes 3.2 Hose pipe 3.3 Fishing net 3.4 Heat shrink film 3.5 Cling film 3.6 Corrugated sheets and pipes 		
UNIT 3: ADVANCED INJECTION MOLDING PROCESSES	 3.a Describe the RIM process 3.b List merits and demerits of RIM process 3.c Describe Gas Assisted Injection Molding process 3.d Explain various non conventional injection molding techniques 	 REACTION INJECTION MOLDING (RIM) Introduction to RIM process Materials and additives Features of RIM process and variables Machine & auxiliary Flow diagram of RIM process Characteristic of RIM parts Merits and demerits of RIM process NON CONVENTIONAL INJECTION MOLDING PROCESS Material, process, advantages and disadvantages of the following processes: Gas-assisted injection molding Structural foam injection molding Heat filled Multicolor molding The molding The molding The molding The molding The molding The molding Metal filled The molding The molding The molding Metal filled Multicolor molding The molding		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit		Teaching Hours	Distribution of Theory Marks				
	Unit Title		R Level	U Level	A Level	Total Marks	
Ι	Advanced blow molding processes	13	2	8	5	15	
II	Advanced extrusion techniques	20	5	13	7	25	
III	Advanced injection molding processes	23	5	15	10	30	

Unit	Unit Title	Teaching Hours	Distribution of Theory Marks			
			R Level	U Level	A Level	Total Marks
Total		56	12	36	22	70

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

S. No.	Unit Number	Description of Laboratory Experiment	
1	I	Set the extrusion stretch blow mold and machine parameters	02
2		Operate stretch extrusion blow molding machine.	04
3		Operate stretch injection blow molding machine.	04
4		Find out production rate of stretch extrusion blow molding machine.	02
5		Find out production rate of stretch injection blow molding machine.	02
6		Operate co-extrusion blow molding machine for a given product	04
7		Find out production rate or co-extrusion & co-injection blow molding machine	02
8		Perform Neck ring process for given product	04
9		Perform Drape process for given product	04
10		Perform Dip/displacement process for given product	04
11		Operate twin screw extruder for PVC pipe plant	04
12		Study of various vented screw extruder design	02
13	Π	Study constructional features of multilayer blown film plant	02
14		Operate multilayer blown film plant	04
15		Study manufacturing of Nylon braided pipes	02
16		Set mold and process parameters for given product of RIM process	02
17	III	Operate RIM process for given product	04
18		Operate gas assisted injection molding machine for given product	04

19	Operate sandwich injection molding machine for given product	04
20	Operate structural foam injection molding machine for given product	04
21	Operate flow molding machine for given product	04
22	Operate metal filled process for given product	04
23	Operate multi color injection molding machine for given product	04
24	Operate reinforced thermoplastic injection molding machine for given product	04
	Total	78

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

SR. NO.	TITLE OF BOOK	AUTHORS	PUBLICATION
1	Plastics Blow moulding hand book	Norman lee	Rapra Technology Limited
2	Blow moulding of plastics	E G Fisher	The Plastics Institute
3	Hand book of plastic processing technology	D. V. Rosato	Springer
4	Blow moulding hand book	Rosato & Rosato	Hanser Publishers
5	Plastics Extrusion Technology	Fried helm Hence	Hanser Publishers
6	Polymer Extrusion	Chris Rauwendaal	Hanser Verlag
7	Extrusion of Plastics	Fisher	The Plastics Institute
8	Plastics Engineering Hand book	Bearins	Van Nostrand Reinhold Company
9	Plastics processing data hand book	Rosato & Rosato	
10	Reaction injection moulding	Walter E. Becker	
11	Injection moulding theory and practice	Rubbin	Wiley-The University of Michigan
12	Developments in injection moulding	Whelen and goff.	
13	Fundamentals of RIM	Macosko	
----	-----------------------------	--------------	--
14	Injection moulding machines	John Hapbern	
15	Plastics injection moulding	Bryce	

(B) List of Software/Learning Websites:

- 1. http://www.bpf.co.uk/
- 2. <u>http://www.paulsontraining.com</u>
- 3. <u>http://www.traininteractive.com</u>
- 4. <u>http://www.kenplas.com/project/pet/petblow.aspx</u>

9. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Students will collect various shaped and different material articles and analyze the process being used for that product.
- 2. Students will collect information related to processes through internet.
- 3. Students will visit nearby such industries for practical knowledge.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- 1. Prof. A.S.Amin, LPE, Government Polytechnic, Ahmedabad.
- 2. Prof. J.R.Desai, LPE, Government Polytechnic, Valsad.
- 3. Smt. S.R.Shah, LPE, Government Polytechnic, Valsad.
- 4. Prof. B.I.Oza, LPE, Government Polytechnic, Ahmedabad.
- 5. Prof. N.C.Suvagya, LPE, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR, Bhopal

1.

2.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM DECORATING AND FINISHING OF PLASTIC PRODUCT

(Code: 3372302)

Diploma Programme in which this course is offered	Semester in which offered	
Plastic Engineering	7 th Semester	

1. RATIONALE

The changing demands of customers with respect to aesthetic looks, applications, properties, protection, etc led the plastic engineers for developing various kinds of decorating processes. A diploma plastic engineer has to select appropriate process, machines and monitor operations of decorating and finishing machineries. This competency requires the knowledge of decorating process, assembling of plastic parts, use of fastening techniques and application of painting and printing. Hence the course has been designed to develop these competencies and its associated-cognitive, practical and affective domain learning outcomes.

2. COMPETENCIES

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- Identify requirements of decoration and finishing of plastics products.
- Select appropriate decorating and finishing process to satisfy demand of end user.

3. COURSE OBJECTIVES:

At the end of the course students will be able to:

- 1. Select suitable fasteners.
- 2. Identify appropriate bonding material and techniques.
- 3. Apply proper surface treatment method.
- 4. Compare various painting processes.
- 5. Distinguish the printing processes.
- 6. Outline the hot transfer methods.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme (In Hours)		Total		Examination Sch				
		Credits (L+T+P)	Theory Marks	Practica	l Marks	Total Marks		
L	Т	Р	С	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics		
UNIT 1: MECHANICAL FASTENERS FOR PLASTIC	 1.a Identify proper fastenings 1.b Use require screw 1.c Classify the fastenings 	Definition, Types and Applications of: 1. Screws 1.1 Self tapping screws 1.1.1 Thread forming screws 1.1.2 Thread cutting screws 2. Post Molded inserts and Molded-in inserts 3. Hinges 4. Rivets 5. Nuts and bolts		
UNIT 2: JOINING AND ASSEMBLING TECHNIQUES	 2.a Apply require cementing techniques 2.b Justify joining methods 2.c Compare thermal bonding processes. 2.d Demonstrate the welding techniques 	 SOLVENT CEMENTING TECHNIQUE Basic principle of solvent bonding Factors to be considered for good cementing Types of solvents use for plastic solvent bonding 4 Different methods for applying solvents for solvent cementing ADHESIVE BONDING Basic principle of adhesive bonding Types of adhesives used for plastics Method of applying adhesives Applications of adhesives THERMAL BONDING TECHNIQUES Introduction of plastic welding Basic principle, equipment, working, merit, demerit and applications of : Hot gas welding 2.2 Hot plate welding 3.2.4 Ultrasonic bonding 		

Unit	Major Learning Outcomes	Topics and Sub-topics
		 3.2.5 Ultrasonic swaging 3.2.6 Ultrasonic Heat sealing 3.2.7 Vibration welding 3.2.8 Spin welding/friction welding 3.2.9 Induction welding 3.2.10 Electromagnetic Induction bonding 3.2.11 Heat sealing / Induction cap sealing 3.2.12 Dielectric heat sealing 3.3 Applications of thermal bonding
UNIT 3: SURFACE TREATMENT	3.a Compare surface treatment method.3.b Apply surface treatment method	 Significance of surface treatment Plastic materials which necessitates surface treatment Technical reasons for non-sticking of printing ink on surfaces of film/moldings Surface treatments 4.1 Washing and cleaning 4.2 Mechanical abrasion 4.3 Chemical etching 4.4 Priming 4.5 Flame treatment 4.6 Corona discharge 4.7 Plasma treatment
UNIT 4: PAINTING AND COATING	 4.a Select proper painting method 4.b Differentiate the painting and coating application. 4.c choose appropriate coating method 	 PAINTING Types of paint materials Process, Equipment and Applications of: Conventional spray Conventional spray
UNIT 5: PRINTING	5.a Classify printing process.5.b choose appropriate printing method5.c distinguish types of ink	 Process, Merit, Demerit And Applications of: 1. Screen printing 2. Flexography printing 3. Gravure printing 4. Pad printing 5. Offset printing 6. Laser printing 7. Vinyl banner printing

Unit	Major Learning Outcomes	Topics and Sub-topics
UNIT 6: HOT TRANSFER PROCESS	 6.a Use require hot transfer process 6.b Select proper hot transfer process 6.c Judge best hot transfer application. 	 Process, Merit, Demerit And Applications of: 1. Electroplating 2. Vacuum metalizing 3. Hot stamping 4. Labels and decals 5. Water transfer process 6. Flocking 7. Laser marking 8. Embossing and Surface Texturing

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

		Teaching Hours	Distribution of Theory Marks			
Unit	Unit Title		R Level	U Level	A Level	Total Marks
Ι	Mechanical Fasteners For Plastic	8	2	2	2	6
II	Joining And Assembling Techniques	13	4	8	4	16
III	Surface Treatment	7	4	4	4	12
IV	Painting and Coating	10	3	5	4	12
V	Printing	10	4	4	4	12
VI	Hot Transfer Process	8	2	6	4	12
Total		56	19	29	22	70

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

S. No.	Unit Number	Description of Laboratory Experiment	Hours
1	Ι	Perform any one mechanical fastening technique.	

			2
2		Perform the adhesive bonding process on different plastic material and products	4
3		Perform the solvent cementing process on different plastic material and products	4
4	II	Perform ultrasonic bonding technique.	4
5		Perform hot gas welding process.	4
6	III	III Perform surface treatment method on different plastic materials.	
7	IV	Perform the any painting method as per the product and plastic material.	6
8		Perform the any coating method as per the product and plastic material.	6
9	N	Perform the printing process as per product shape and form.	6
10		Operate the different printing machine and suggest the proper process for proper product	6
11	VI	Perform the hot transfer process as per requirement.	
		Total	56

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

SR. NO.	TITLE OF BOOK	AUTHORS	PUBLICATION
1	Handbook of Plastic Technology	Rosato/Rosato	Allen & Baker
2	Plastic Materials and Processes	Norman Lee	Goodman
3	Plastic Engineering Handbook	Fisher	J.L.Frados

4	SPI Plastic Engineering Handbook	James L. Throne	Bearins
5	Plastic Blow Moulding Handbook	Peter Klein	

(B) List of Software/Learning Websites:

- 1. www.ptonline.com/zones/decorating
- 2. www.esterline.com/Portals/13/.../WP_InMoldDecorating_6Page.pdf
- 3. <a>speplasticsindustryresource.com/.../Decorating_and_Finishing/3335

9. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Students will collect different shaped and different material articles and analyze the type of process for that product for decorations and finishing.
- 2. Students will collect information related to process through internet.
- 3. Students will visit nearby mould making industry.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- 1. Prof. A.S.Amin, LPE, Government Polytechnic, Ahmedabad.
- 2. Prof. J.R.Desai, LPE, Government Polytechnic, Valsad.
- 3. Smt. S.R.Shah, LPE, Government Polytechnic, Valsad.
- 4. Prof. B.I.Oza, LPE, Government Polytechnic, Ahmedabad.
- 5. Prof. N.C.Suvagya, LPE, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR Bhopal

- 1.
- 2.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM DESIGNING OF EXTRUSION DIES (Code: 3372303)

Diploma Programme in which this course is offered	Semester in which offered
Plastics Engineering	7 th Semester

1. RATIONALE

Extrusion is the highest plastic consuming process mainly used for continuous manufacturing of rods, profiles, tubes, pipes, films, sheets, wire and cable etc. Amongst the different items of equipment employed for the operation of extrusion process, the extruder and die are perhaps the most important. A Plastic Diploma engineer has to supervise the designing and manufacturing process of dies and monitor extrudate production using these dies. This competency requires the knowledge of various designing aspects of extrusion dies. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCIES

The course should be taught and implemented with the aim to develop different types of skills so those students are able to acquire following competency:

- Identify requirements of various dies.
- Design extrusion dies.

3. COURSE OBJECTIVES:

At the end of the course students will be able to:

- 1. Understand melt rheology.
- 2. Analyze die design factors.
- 3. Select proper breaker plate design.
- 4. Select proper die design according to shape of extrudate.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Examination Scheme					
(In Hours)		Credits (L+T+P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	200
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
UNIT – I POLYMER MELT RHEOLOGY	 1.a Understand the terms related with rheology 1.b Identify various types of flow 	 Basic Definitions: shear, shear stress, shear rate & viscosity Effect of shear stress and shear rate on viscosity of melt Velocity profiles of Newtonian and Non- Newtonian fluids Types of flow Visco-elasticity, viscous flow and elastic flow
UNIT- II BASICS OF DIE DESIGN	 a Identify Factors for die design. b Analyze die design factors 	 2.1 Factors affecting die design 2.2 General die design rules 2.3 Materials for extrusion dies 2.4 Equation for output of Newtonian fluid through tubular cross section 2.5 Land length and its importance in die design 2.6 Die geometry 2.7 Die restriction methods and its effect on melt flow 2.8 Die streamlining methods 2.9 Melt fracture phenomenon 2.10 Die-swell and its effect on extrudate
UNIT – III DIE ADAPTOR, BREAKER PLATE & SCREEN PACK	 3.a Understand die adaptor design 3.b Select proper adaptor design 3.c Understand functions of breaker plate and screen packs 3.d Analyze various breaker plate designs 3.e Select proper breaker plate design 	 Die Adaptor 3.1 Significance of die adaptor 3.2 Position of die adaptor and its fitting methods 3.3 Factors to be considered for adaptor design Screen Pack & Breaker Plate 3.4 Position and functions of screen pack and breaker plate 3.5 Various breaker plate designs 3.6 Factors for correct breaker plate assembly
UNIT – IV TYPES OF EXTRUSION DIES	 4.a Understand constructional features of various dies 4.b Analyze various dies according to shape of extrudate 4.b Select proper die 	 4.1 Types of various extrusion dies with respect to melt flow direction 4.2 Straight through, crosshead, offset dies and its applications Flat and Tubular Film Dies 4.3 Tubular (blown) film dies – side fed & center fed dies 4.4 Constructional features of tubular dies 4.5 Comparison of side fed & centre fed tubular

Unit	Major Learning Outcomes	Topics and Sub-topics
		dies
		4.6 Constructional features of flat film die
		4.7 Multilayer film die and its features
		4.8 Compare feed block and multi-manifold multilayer dies
		Wire Coating Die
		4.9 Pressure and tubing die
		4.10 Constructional features of wire coating die
		and functions of various components
		Pipe & Tube Die
		4.11 Constructional features of tube die
		4.12 Construction features of straight through and offset pipe die
		4.13 Significance of internal and external sizing calibrators
		Sheet Dies
		4.14 Constructional features of coat hanger sheet
		die
		4.15 Fish tail die constructional features and its applications
		Dies for Solid Sections
		4.16 Dies for Rod, tape and profiles

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

		Teaching Hours	Distribution of Theory Marks				
Unit	Unit Title		R Level	U Level	A Level	Total Marks	
Ι	Polymer Melt Rheology	4	2	5	0	07	
II	Basics of Die Design	12	4	12	5	21	
III	Die Adaptor, Breaker Plate & Screen Pack	8	4	8	2	14	
IV	Types of Extrusion Dies	18	4	14	10	28	
TOTAL		42	14	39	17	70	

S. No.	Unit Number	Description of Laboratory Experiment	Hours
1		Draw assembly drawing of film die.	20
2	IV	Draw detail drawing of film die drawn in first sheet.	16
3		Draw assembly drawing of pipe die.	20
		TOTAL	56

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

SR. NO.	TITLE OF BOOK	AUTHORS	PUBLICATION
1	Extrusion of Plastics	Fisher	Plastics and Rubber Institute, University of Verginia
2	Extrusion Dies for Plastics and Rubbers	Walter Michaeli	Hanser
3	Dies for Plastics Extrusion	M.V.Joshi	Mcmillan
4	Polymer Extrusion	Chris Rauwendal	Hanser
5	Extruding Plastics	D.V.Rosato	Chapman & Hall

(B) List of Software/Learning Websites:

- 1. <u>http://www.kostic.niu.edu/extrusion_die_design-echp-1.pdf</u>
- 2. <u>https://web.fe.up.pt/~fpinho/pdfs/jmpt1.pdf</u>
- 3. <u>http://rheology.tripod.com/z11.07.pdf</u>
- 4. http://en.wikipedia.org/wiki/Die_forming_(plastics)

9. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Students will collect information about recent trends in extrusion die design.
- 2. Students will prepare banners showing constructional features of various dies.

3. Students will visit nearby industries and collect information about die design.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- 1. Prof. A.S.Amin, LPE, Government Polytechnic, Ahmedabad.
- 2. Prof. J.R.Desai, LPE, Government Polytechnic, Valsad.
- 3. Smt. S.R.Shah, LPE, Government Polytechnic, Valsad.
- 4. Prof. B.I.Oza, LPE, Government Polytechnic, Ahmedabad.
- 5. Prof. N.C.Suvagya, LPE, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR Bhopal

1.

2.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM DESIGNING OF PLASTIC PRODUCT

(Code: 3372304)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	7 th Semester

1. RATIONALE

Products made from plastics are used in a variety of applications and in many areas like electrical and electronics, medical, domestic appliances, engineering applications etc. This course will help the students to learn how to design a plastic product by understanding various design considerations, optimum material selection and process selection. It will also help to learn plastic product design with specialized properties and also understand the entire procedure for designing various plastic products by case study.

2. COMPETENCIES

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- Design various plastic products as per the requirement and area of application.
- Acquire the ability to judge the best material and process, suitable for manufacturing a plastic product.

3. COURSE OBJECTIVES:

At the end of the course students will be able to:

- 1. Learn the factors affecting product design.
- 2. Understand general product design considerations.
- 3. Select optimum material suitable for manufacturing the plastic product.
- 4. Select optimum process suitable for manufacturing the plastic product.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total		Exan	nination Scheme			
(In Hours)		Credits (L+T+P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
UNIT 1: INTRODUCTION TO PRODUCT DESIGN	 1.a Understand the concept of product design 1.b Know the factors affecting product design 1.c Know steps in product design 	 Introduction to product design Product design flow chart from concept to fabrication Product Design steps Factors affecting product design
UNIT 2: PRODUCT DESIGN FEATURES	2.a Know preliminary design considerations2.b Understand general design considerations	 Check list for product design Preliminary design considerations Designing end-use requirements 2.1 Designing the preliminary design 2.1 Designing the preliminary design 2.2 Drafting the preliminary design 2.3 Prototyping the design 2.4 Testing the design 2.5 Taking a second look 2.6 Writing meaningful specifications 2.7 Setting up production 2.8 Controlling the quality General design considerations related to- 3.1 Wall thickness 2.5 Taking and Badii 3.3 Ribs and bosses 4 Undercuts 5.5 Taper or draft 6 Holes 7 External and internal threads 8 Inserts 9 Parting lines 1.0 Surface treatments 1.1 Molded lettering

Unit	Major Learning Outcomes	Topics and Sub-topics
UNIT 3: MATERIAL SELECTION CONSIDERATIONS	 3.a Understand the concept of material selection 3.b Know the short term and long term properties of plastic materials 3.c Judge the optimum material suitable for manufacturing a product 	 Concept of material selection Various plastic materials used for making a product Short term and long term properties of plastic materials Comparison of properties for various plastic materials and optimization of material
UNIT 4: PROCESS SELECTION	4.a Understand the concept of process selection4.b Judge the optimum process suitable for manufacturing a product	 Concept of process selection Different plastic processing methods and its features with respect to product design Comparison and optimization of process with respect to product shape, size, quantity, quality, cost etc.
UNIT 5: PLASTIC PRODUCT DESIGN- CASE STUDY	5.a Know the procedures for designing various plastic products used in variety of areas	 Design procedure for plastic products like- 1.1 Pipe – for agricultural and chemical applications 1.2 Disposable cups 1.3 Water Tank 1.4 Products with molded hinges 1.5 O-rings and seals 1.6 Gear 1.7 Bearing 1.8 Contact Lens 1.9 Camera lens 1.10 Wind Mill blade 1.11 Chemical Tank/Chemical reactor 1.12 Food packageetc

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit		Teaching Hours	Distribution of Theory Marks				
	Unit Title		R Level	U Level	A Level	Total Marks	
Ι	Introduction to Product Design	04	04	02	01	07	

			Distribution of Theory Marks				
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks	
II	Product Design Features	14	10	08	03	21	
III	Material Selection Considerations	08	08	04	02	14	
IV	Process Selection	08	08	04	02	14	
V	Plastic Product Design- Case Study	08	08	04	02	14	
Total		42	38	22	10	70	

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

S. No.	Unit Number	Description of Laboratory Experiment	Hours
1		Study and list the factors affecting product design	02
2	Ι	Study and list the steps in product design	02
3		Study product design flow chart from concept to fabrication	02
4		Prepare a checklist for product design	04
5	II	Study general design considerations related to wall thickness, fillets and radii	04
6		Study general design considerations related to ribs and bosses, undercuts and holes	04
7	III	Tabulate and compare properties of various plastic materials	04
8	IV	Tabulate various types of plastic processing methods with respect to product design	04
9	V	Study the procedure for designing a plastic product- Pipe	02

10	Study the procedure for designing a plastic product- Disposable cups	02
11	Study the procedure for designing a plastic product- Overhead water storage tank	02
12	Study the procedure for designing a plastic product- Chemical Tank	02
13	Study the procedure for designing a plastic product- Contact Lens	02
14	Study the procedure for designing a plastic product- Gears	02
	Total	40

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

SR. NO.	TITLE OF BOOK	AUTHORS	PUBLICATION
1	Product design with plastics	J.B.Dym	Industrial Press Inc., New York
2	Plastics Product Design Hand Book	Edward Miller	Marcel Dekker , Inc., New York
3	Plastics Engineered Product Design	Dominick V Rosato and Donald V Rosato	Elsevier Advanced Technology, U.K
4	Plasticss End Use Applications	Donald V Rosato	Springer (India) Private limited
5	Plastic Materials & Processes	S.S. Schwartz and S. H. Goodman	Van Nostrand Reinhold
6	Hand Book of Plastics a& Elastomers	C. A.Harper	
7	Plastics Product Design Engg. Hand Book	Levy & Dubois	Van Nostrand Reinhold
8	Plastics Product Design	R.D.Back	

(B) List of Software/Learning Websites:

- 1. <u>http://www.madehow.com/Volume-2/Contact-Lens.html</u>
- 2. <u>http://www.designboom.com/history/monobloc.html</u>
- 3. <u>http://en.wikipedia.org/wiki/Water_tank</u>
- 4. http://plastics.dupont.com/plastics/pdflit/americas/general/H76838.pdf

9. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Students will collect different shaped plastic products and plastic materials made from different materials and analyze the type of processing method and material required for that product.
- 2. Students will collect information related to product design through internet.
- 3. Students will visit nearby processing industry.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- 1. Prof. A.S.Amin, LPE, Government Polytechnic, Ahmedabad.
- 2. Prof. J.R.Desai, LPE, Government Polytechnic, Valsad.
- 3. Smt. S.R.Shah, LPE, Government Polytechnic, Valsad.
- 4. Prof. B.I.Oza, LPE, Government Polytechnic, Ahmedabad.
- 5. Prof. N.C.Suvagya, LPE, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR Bhopal

- 1.
- 2.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM RECYCLING OF PLASTIC (Code: 3372305)

Diploma Programme in which this course is offered	Semester in which offered
Plastics Engineering	7 th Semester

1. RATIONALE

Plastics are being used in practically all areas of consumer products, including construction, transportation, packaging, automobile and agriculture. In recent world more concern is on the possible damaging impact of plastics on the environment. A Plastic Diploma engineer has to identify all possible sources of plastic waste generation and do recycling of it with or without energy recovery within government norms. This competency requires the knowledge of various plastic recycling techniques. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCIES

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- Identify sources of plastic waste.
- Select suitable plastic recycling method.

3. COURSE OBJECTIVES:

At the end of the course students will be able to:

- 1. Select waste disposal method.
- 2. Select proper separation method.
- 3. Identify primary and secondary recycling methods.
- 4. Analyze various tertiary and quaternary recycling methods.
- 5. Understand recycling methods of various plastics.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total		Exan	nination Scheme			
(In Hours)		Credits (L+T+P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
UNIT – I SOURCES OF PLASTIC WASTE AND ITS MANAGEMENT	 1.a Identify sources of plastic waste 1.b Select waste disposal method 	 1.1 Introduction to Plastics Waste 1.2 Definitions of related terms – Waste Plastic, Industrial Plastic Waste, Postconsumer Plastic Waste, Nuisance Plastic, Scrap Plastic, Primary Recycling, Secondary Recycling, Tertiary Recycling And Quaternary Recycling 1.3 Economic and environmental impact of Plastic Waste 1.4 Sources of waste – postconsumer, municipal and industrial waste 1.5 Management of plastic waste - 4 R (reduction, reuse, recycling and recovery) 1.6 Plastic cycle - flow of plastic products and plastic waste 1.7 Waste disposal a. Landfill of municipal solid waste– open dumping and sanitary landfill b. Plastics in landfill c. Future trends
UNIT- II SEPARATION METHODS	 a Identify various separation methods. b Select proper separation method. 	 2.1 Size reduction by mechanical methods 2.2 Separation of plastics using physical properties 2.3 Separation using recycling codes 2.4 Separation processes specific to plastics a. Separation of paper/plastic mixtures-Application of Heat, Wet Separation Process, Electro Dynamic Separation b. Separation of plastic from plastic-coated fabric c. Separation of mixtures of plastics-Float Sink Method, Using Selective Wetting Characteristics, Solvent Separation
UNIT – III PRIMARY & SECONDARY RECYCLING METHODS	 3.a Identify primary and secondary recycling methods 3.b Analyze various methods 3.c Select suitable method 	 Primary Recycling 3.1 Introduction 3.2 Primary recycling methods a. Granulators b. Cryogenic grinding c. Plunger and screw type stuffer d. In-line recycling

Unit	Major Learning Outcomes	Topics and Sub-topics
		 Secondary Recycling 3.3 Introduction to secondary recycling 3.4 Various technical approaches for secondary recycling 3.5 Secondary recycling by mechanical reworking of plastic waste 3.6 Recycling by chemical modification of plastic waste 3.7 Secondary recycling by co-extrusion and co-injection molding 3.8 Use of plastic as a filler
UNIT – IV TERTIARY AND QUATERNARY RECYCLING	4.a Identify tertiary and quaternary recycling methods.4.b Select proper method	 Tertiary Recycling 4.1 Pyrolysis a. Introduction to pyrolysis and its advantages b. Introduction to pyrolysis reactors of plastics waste – Union Carbide System, Reactor by Japan Steel Works 4.2 Chemical decomposition of plastic waste a. Hydrolysis b. Glycolysis Quaternary Recycling 4.3 Introduction to quaternary recycling 4.4 Constructional features of incinerators 4.5 Incineration of plastic waste and its problems
UNIT – V RECYCLING METHODS OF SPECIFIC PLASTICS	5.a Understand recycling methods of various plastics.	 5.1 Describe recycling methods of following plastics : a. PVC b. PET c. PMMA d. HDPE e. LDPE f. PS

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

		T 1.	Distribution of Theory Marks			
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks

		Teaching Hours	Distribution of Theory Marks			
Unit	Unit Title		R Level	U Level	A Level	Total Marks
Ι	Sources of Plastic Waste and its Management	9	4	8	2	14
II	Separation Methods	8	4	8	2	14
III	Primary & Secondary Recycling Methods	9	3	11	0	14
IV	Tertiary And Quaternary Recycling	8	4	10	0	14
V	Recycling Methods of Specific Plastics	8	4	10	0	14
TOTAL		42	19	47	4	70

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

S. No.	Unit Number	Description of Laboratory Experiment	Hours
1	T	To study various sources of plastic waste.	2
2	1	To study waste disposal methods.	2
3		To perform plastic waste size reduction by mechanical method.	2
4	II To carry out separation of plastics using float-sink method.		2
5		To study various separation methods of paper/plastic mixtures.	2
6		To perform primary recycling of plastic using granulators.	2
7	III	To study recycling by chemical modification of plastic waste.	2
8		To study secondary recycling by co-extrusion and co- injection molding.	2
9	IV	To study various pyrolysis reactors.	2
10	1 V	To study quaternary recycling methods.	2

11		To carry out depolymerisation of PMMA for recovery of monomer.	2
12	V	To study recycling methods of PET	2
13	v	To study recycling methods of PVC.	2
14		To study recycling methods of HDPE.	2
		TOTAL	28

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

SR. NO.	TITLE OF BOOK	AUTHORS	PUBLICATION
1	Plastic Waste	Jacob Leidner	Marcel Dekker
2	Feedstock Recycling of Plastic Waste	Jose Aguado & David Serrano	Royal Society of Chemistry
3	Mixed Plastic Recycling Technology	Bruce Hegberg, Gary Brenniman W.H.Hallenback	Noyes Data Corporation
4	Plastics Technology Handbook	Donald Hudgin	Taylor & Francis
5	Recycling of Plastic Materials	La Mantia	Chemtec Publishing
6	Modern Plastics Handbook	Harper	McGraw-Hill

(B) List of Software/Learning Websites:

- 1. http://nzic.org.nz/ChemProcesses/environment/14E.pdf
- http://www.g.eng.cam.ac.uk/impee/topics/RecyclePlastics/files/Recycling%20Plastic%20
 v3%20PDF.pdf
- 3. http://plasticisrubbish.com/2013/03/20/recycling-plastic-2
- 4. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/Volumes/Vol42-4.pdf

9. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Students will collect different plastic products with recycling codes.
- 2. Students will prepare identification chart with recycling codes.
- 3. Students will prepare flow chart of plastic cycle.
- 4. Students will visit nearby industries and collect information about recycling process.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- 1. Prof. A.S.Amin, LPE, Government Polytechnic, Ahmedabad.
- 2. Prof. J.R.Desai, LPE, Government Polytechnic, Valsad.
- 3. Smt. S.R.Shah, LPE, Government Polytechnic, Valsad.
- 4. Prof. B.I.Oza, LPE, Government Polytechnic, Ahmedabad.
- 5. Prof. N.C.Suvagya, LPE, Government Polytechnic, Chhotaudepur.

Coordinator and Faculty Members from NITTTR Bhopal

1.

2.

GUJARAT TECHNOLOGICAL UNIVERSITY

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL TRAINING-II (COURSE CODE: 3382301)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	8 th Semester

1. RATIONALE

The diploma engineers are required to work in industry related to plastic processing, machine manufacturing, plastic raw material manufacturing, mold and die making, testing, recycling, designing etc. This course has been designed to fulfill need of industrial exposure, where they get an experience of industrial environment.

2. LIST OF COMPETENCIES

The course is designed and implemented with the aim to develop different types of skills leading to achieve following competencies:

Perform many activities/skills and get information pertaining to plastic industry in areas of process, processing equipments, materials, testing and instruments.

3. COURSE OUTCOMES

- > Get experience of real life working environment.
- ➤ Gain practical knowledge, new skills and be aware of current technologies.
- > Provide opportunities to students to be as prospective employees.
- > Analyze problems and find/suggest possible solutions.
- > Present a project report both in oral and written form based on work experiences.

4. TEACHING AND EXAMINATION SCHEME

Course Code	Course Title	Teaching		ing	Total	Examination Scheme				ne
		Scheme			Credits	Theory		Practical		Total
		(In Hours)		urs)	(L+T+P)	Marks		Marks		Marks
		L	Т	Р	С	ESE	PA	ESE	PA	
3382301	INDUSTRIAL TRAINING-II	0	0	0	30	00	00	300	500	800
Total		0	0	0	30	00	00	300	500	

Legends:

L-Lecture; T-Tutorial; P-Practical; ESE – End Semester Exam., PA-Progressive Assessment,

5. EVALUATION PATTERN

Evaluation for PA by the Internal examiner: - Evaluation of 500 marks for PA will be done by the internal examiner at institute level, mainly based on weekly diary, follow up report, progress report and final training report as follows:

INDUSTRIAL TRAINING 20 - 20

DEPARTMENT: - PLASTIC ENGINEERING

NAME OF STUDENT:-SEMESTER: - 8 ENROLLMENT NUMBER:-NAME OF INDUSTRY:-

ADDRESS:-

JOINING REPORT

FROM: (Name of company)
TO,
PRINCIPAL
(Name of institute)
Subject: - Joining report for industrial training of 8 th semester As per your letter no. : dated I have reported for training at on The weekly off day of the industry is
Thanking you.
Yours' faithfully ()
Signature and Stamp of Training Officer (To be send immediately after joining the industry)

DETAIL OF THE INDUSTRY

1. NAME OF INDUSTRY:-

2. ADDRESS:-

3. PERIOD OF TRAINING:-

4. NAME OF TRAINING OFFICER AND DESIGNATION:-

5. WEEKLY OFF DAY:-

WEEKLY REPORT

PERIOD: to	=	DAYS
OFF DAYS:-	_ =	DAYS
LEAVE ENJOYED ON:	_ =	DAYS
TOTAL DAYS ATANDED	_ =	DAYS
DETAILS OF WORKING:-		

SIGNATURE (TRAINING OFFICER) SIGNATURE (STUDENT)

PERIC DFF DA LEAV OTAL EVAL	D: - FROM / /201 TO YS: E ENJOYED ON DAYS ATANDED UATION:-	/ /201 = = =	DAYS DAYS DAYS DAYS
		EVALU	ΓΙΟΝ BY
SR No. PARTICULARS		TRAINNG OFFICER (INDUSTRY)	FACULTY (INSTITUTE)
1	Punctuality		
2	Participation in work allotted		
3	Practical level attained		
4	Industrial relationship		
5	Project write - up		

Any other remarks: -

SIGNATURE (FACULTY)

PROGRESS REPORT							
(Name of Institute) PLASTIC ENGINEERING DEPARTMENT							
Name of Student	:						
Enrolment No.	:						
Name of Industry	:						
Address of Industry	:						
Comments	: 1.	Type of the Industr	у				
		Production	Machine N	Aanufacturing			
	2.	Production of :					
	3.	B. Regularity of student during training					
		Average	Good	Excellent			
	4.	Stipend paid per month Rs.					
	5.	Industry's opinion regarding trainee					
Remarks	:	Average	Good	Excellent			
Sign:				Training In-charge			
Name of faculty:				(Industry)			

Final Training Report:

FORMAT OF INDUSTRIAL TRAINING REPORT

- ➢ Title page
- > Certificate
- Preface
- Acknowledgement
- ≻ Index
- Introduction of industry
- Industry lay out
- Hierarchy of industry/organization chart
- > Products
- ➤ Raw materials
- Types of major equipments/instruments/machines used in industry with their specification, approximate cost and specific use
- Manufacturing/production process
- ➢ Faults and remedies
- ➤ Maintenance
- ➤ Safety features
- > My liking & disliking of work places
- ➢ References
- ➢ Bibliography

Evaluation for ESE by the External examiner: - Evaluation of 300 marks for ESE will be done by the external examiner on following criteria –

1. Knowledge gained-

- > Products
- ➢ Raw materials
- > Types of major equipments/instruments/machines used in industry with their specification, approximate cost and specific use
- Manufacturing/production process
- ➢ Faults and remedies
- ➤ Maintenance
- ➤ Safety features
- ➢ Planning

2. Skills learned-

- > Process parameter setting of various plastics machineries
- ➤ Troubleshooting
- ➢ Safety precautions

3. Incidents/ cases from Experiences-

The students should record classic cases for learning for others, such as

- > Tricky problems and their solutions
- > Typical fault diagnosis and their solutions
- Tricky symptoms and their solutions
- Part modifications
- System modifications
- Cost reduction cases
- Quality improvement
- Improvement Method

6. SUGGESTED WORK LOAD

- As per the Board of Apprenticeship, faculty of the parent institute has to visit industry at least once in a month for evaluating student's activity and their progress.
- The number of industry which provides training and number of students are varying every year. In this consequence and considering role of faculty in training, workload is allotted to faculty for industrial visit.
- Work load allotted to faculty per batch of 15 students is 30 Hrs / week. Institute has to prepare time table of the staff in such a manner that one faculty must be remain free for one whole day for industrial visit/counseling of the trainee. Trainee should be distributed equally among the faculty involved and the faculty will be considered guide/counselor for those students. Progressive assessment will be carried out by that guide/counselor.

7. GUIDELINES FOR SANDWICH APPRENTICESHIP INDUSTRIAL TRAINING-II

- Duration of the training: Six months. It should start within one week from the date of completion of GTU examination of the semester VII.
- Eligibility: Student will be allowed for training subject to GTU eligibility criteria for particular semester.
- Apprenticeship Board: The training will be covered under the Apprenticeship Act 1973 and as per current rule; the trainee will be eligible for a stipend of Rs. 2890/- per month out of which 50% will be paid by the employer and 50% will be reimbursed by Board of Apprentice Training (BOAT), Western Region, Mumbai. Stipend will be revised periodically by Board of Apprentice.
- Training Area : Students can be trained in Plastic Processing, Machine Manufacturing, Raw Material Manufacturing, Mould/die making, Testing, Recycling and Designing industries. Students should be sent to industry strictly based on merit.

A. ROLE OF DEPARTMENT

- Department has to send training request letter to various industries well in advance before commencement of training.
- After getting sufficient number of seats from the industries, students will be placed in different industries for their 8th semester training.
- Students will have to fill up training contract form (uploaded on B.O.A.T. web site) in three copies with photographs sealed and signed by the authorities.
- Department will issue an order letter to industry for the said training mentioning the name and registration number of students.
- During the training period, the head of the department will maintain a schedule for follow –up of industrial training and according to it send the faculty to various industries.
- The faculty will check the progress of the student in the training, attendance; discipline and project report preparation and also give necessary guidance to students.
- > The department has to prepare Progress Report of the trainee for the industrial training.
- > At the end of the training, concerned faculty will do assessment of the work done by trainee.

B. ROLE OF INDUSTRY

- > Industry will give effective training to the students for improving their practical skills.
- > Industry may provide training in-charge for the group of the students under training.
- Training in-charge has to evaluate each student every week and signed weekly diary with appropriate remarks.
- Industry may allot project to individual or group of students under training and students has to prepare report on the same project.
- > Training in-charge has to guide students for preparing their project report.
- Industry has to maintain attendance for the student under training and report for any irregularity of the students to their parent institute.

C. GUIDE LINE FOR STUDENTS

- Students have to fill the contract forms duly sealed and signed by authorities along with training order letter and submit it to training officer in the industry on the first day of training.
- ➢ He/she will have to get all the necessary information from the training officer regarding schedule of the training, rules and regulations of the industry.
- During the training period students will keep record of all the useful information and maintain the weekly diary.
- He/she will prepare a detailed training report about the whole process and will submit it to the department at the time of examination.

8. SUGGESTED LEARNING RESOURCES

- > Students may visit websites as their learning tool during industrial visit.
- > Source of learning websites are already given during previous semesters.
- > Search videos, animations for preparation of training report during the training period.

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. J. R. Desai, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Smt. S. R. Shah, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad